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Abstract

Test case generation for autonomous vehicles has gained large scale attention in recent
years due to advances in motion planning algorithms, creating a need for verified safety
with testing scenarios of these novel approaches. To this end we present in this work a
scenario synthesis approach based on a templating system, using which we are able to
synthesize many concrete scenarios satisfying any given specification, which are then
used for verifying a motion planner.

We represent the problem of generating many concrete realizations from a single
specification as a satisfiability problem of a linear Temporal Logic formula, modelling
the behavior of every vehicle on given map data. This approach has the advantage of
implicitly coupling all vehicle interactions together, allowing for complex behavior to
emerge while specifying a minimal number of constraints on the system. Based on a
satisfying assignment to such a linear Temporal Logic formula we synthesize a scenario
by formulating it as an optimization problem, whose solution yields a concrete scenario
with exact behavior for all vehicles.

To show the applicability of our approach, we evaluate it with two templates repre-
senting a highway and urban scenario showing the range different types of behavior
generated. Therefore, we deem this approach highly relevant to the domain of falsifi-
cation testing for autonomous vehicles and detail future steps for integrating it into a
closed loop testing framework.
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1. Introduction

1.1. Motivation

Studies show that around 90% of vehicle crashes are due to human error [1]. Au-
tonomous vehicles aim to reduce those numbers by cutting the human out of the loop
entirely and having a machine make driving decisions. However, such an approach
requires the validation of the motion planning algorithm, responsible for vehicle move-
ment. A purely real world evaluation of this algorithm is however infeasible, as the dis-
tance which would have to be driven to prove reasonable safety is exceedingly large [2,
3, 4]. Therefore, testing in simulation is performed to offload some required testing
time to a synthetic environment which can be executed much faster than real time.

Current approaches are able to collect massive databases of scenarios, usually from
human driving data, and validate novel motion planners against those databases. [5]
One limitation of this approach is however that only behavior in the database can be
tested against and very rare behavior is difficult to capture at scale.

Therefore, in this work we propose a novel approach to generate many scenarios
from a single template and accompanying map data, which can be easily defined to
express constrained environments for a set of vehicles or specifications with many de-
grees of freedom within the same system. Using this templating system it is possible to
generate large amounts of rare event behavior for a set of vehicles, as well as synthesize
concrete scenarios which can in turn be used to test motion planners.

This work is highly relevant for falsification testing of autonomous vehicle motion
planning algorithms, as each generated scenario can be regarded as a test case for a
motion planner. Specifically, if our approach is able to generate scenarios of sufficient
realism, and a particular motion planner fails to act safely within it, we can conclude
that the planner must be unsafe.

1.2. Related Work

Generating scenarios is a topic which has gained much interest in the past few years.
Many approaches have been proposed to deal with the core difficulty of generating
large numbers of such sufficiently different conditions for autonomous driving. Appli-
cations of those scenarios range from verification of static scenarios against kinematic
feasibility [5], to validation of traffic rule [6, 7] consideration, to synthesis of complete
systems from complex specifications [8, 9, 10, 11].
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1. Introduction

Sampling based techniques As a starting point most systems use a knowledge base
of some sort to specify known true facts about the domain of autonomous vehicles,
for instance Bagschick et al. take this logical conclusion and generate entire scenar-
ios from such a knowledge base [12]. However, this approach has limitations around
synthesizing novel scenarios, which are not directly derivable from a knowledge base.
To address this issue sampling techniques can be used in conjunction with a rich sce-
nario specification language [8, 9]. While the results by Fremont et al. are impressive,
they do not model a temporal dimension in the specifications they generate, limiting
the amount of complex behavior synthesized [8]. Majumdar et al. address this by
considering temporal behavior [9], but also rely on sampling techniques, having a big
computational impact when searching though large solution spaces with sufficient res-
olution. However, further cross-entropy based sampling techniques seem promising
for identifying dangerous scenarios from a specification [13, 10].

Formal Methods Another approach to the problem are formal methods such as the
one presented in this work. Their primary goal is to prove components of an au-
tonomous system correct, or in the case where such a proof becomes intractable due
to increasing system complexity, rely on falsification [14, 15, 16]. Since the domain
of autonomous vehicles is large and modelling all constraints of the physical world is
exceedingly difficult, the latter approach, falsification, has gained popularity. Here, the
goal is to generate test scenarios and apply them to a specific algorithm, testing for
unsafe behavior. The core difficulty in for all approaches however, is generating only
scenarios which provide meaningful test cases, as otherwise the problem becomes com-
putationally intractable. Many concepts have been proposed to approach this problem
with formal methods, i.e. by formulating it as an constraint satisfaction problem [17],
evolutionary algorithm [11] or optimization problem [18, 19].

Temporal Logic with optimization approaches A promising direction is the synthe-
sis of dynamic behavior using temporal logic, as this class of logic allows specification
of constraints over time, it lends itself well to controller synthesis for dynamic systems,
such as autonomous vehicles. This approach has existed for some time but was com-
putationally infeasible [20] until a result by Piterman et al. showing that a large subset
of temporal logic is solvable in polynomial time [21]. Based on this, general controller
synthesis algorithms for dynamic systems have been proposed [22], as well as specific
ones applied to human robotics [23]. Additionally, results foregoing an automaton
based representation have also been considered [24, 25].

For complex systems however, temporal logic based systems synthesizing a realizable
strategy are often coupled with optimization based approaches [26, 27, 25] to yield
concrete scenarios. This approach has the advantage that many complex specifications
can be encoded easily in various forms temporal logic, which has a large expressive
power and concrete synthesis is efficient when given by an optimization problem. This
is especially promising as, for instance traffic rules in autonomous vehicles can be

2



1.3. Problem Statement

directly specified in temporal logic [6, 28]. Additionally, the well-behaved response of
these systems to slight disturbances in the inputs is also attainable [29].

1.3. Problem Statement

In this work we cover the generation of concrete Traffic Scenarios from abstract speci-
fications. Based on a given domain, or map, as well as constraints on vehicles acting
on that map over time, we synthesize feasible scenarios it. Specifically, our approach
provides all such satisfying solutions to an abstract specification.

While doing so the input specifications to our approach have both the ability to
define exact behavior of all involved vehicles, or one can refrain from doing so, and
our approach will also accept specifications having many degrees of freedom. All of
those specifications on such a spectrum of complexity are processed in the same way
and yield the complete set of satisfying solution to such specifications.

Additionally, we make this approach practically applicable, by constraining ourselves
to techniques for synthesizing those solutions which are computationally feasible and
dot not scale exponentially in computation time with the size of the problem. Also, to
provide a user with the best feedback possible, we adopt a fail fast approach, meaning
that invalid specifications are detected early in the process and give rich feedback on
the causing error.

1.4. Contributions

Our main contribution of this work is a novel scenario synthesis approach in the space
of Autonomous Vehicles. With its main goal being simple specification of constraints
over time by use of a template system on known map data. From such a template we
are able to synthesize concrete scenarios over a series of time steps, which are consistent
with the original specification.

Firstly, we translate a given template and map data to a representation in linear
Temporal Logic (LTL) by considering all behaviors possible within the template’s con-
straints. From those behaviors we build a graph representing every reachable state for a
vehicle and the requirements to reach any such state. Based on this graph we addition-
ally derive some universal constraints required to express general truths in the domain
of autonomous vehicles, i.e. serial lane movements. This graph and its universal con-
straints are then translated to LTL and checked for satisfiability. Every such solution
to this LTL representation can then be regarded as a run through the previously built
predicate graph, while observing general road constraints. From this solution, we in-
terface with the approach introduced by Klischat [18] to synthesize concrete scenarios
from it.

Additionally, we use previous solutions of the template’s LTL formula to enumerate
all satisfying solutions to it and synthesize concrete scenarios for each of them. By
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1. Introduction

repeating this process until no more distinct satisfying solutions are found, we are able
to generate the complete set of satisfying solutions for a given template.

Using this enumeration of all satisfying solutions for a template we are able to gen-
erate novel driving behavior from a small set of input data, i.e. a lane network and
constraints over time in the shape of a template. We then evaluate the quality of gener-
ated scenarios using our approach in chapter 5 and give a set of potential use cases in
falsification of motion planners in chapter 6.

1.5. Overview

Over the course of this work we introduce important notation and concepts relevant to
our underlying vehicle framework, linear Temporal Logic and our template specifica-
tions in chapter 2.

Within chapter 3 we present the main body of this work, detailing the process of
finding satisfying solutions for a given template. Each of those solutions is then passed
to an optimization approach to synthesize concrete scenarios from them. In chapter 5
we evaluate and discuss features of our approach on two common types of scenarios,
one in a highway setting and an urban one. Lastly, chapter 6 gives a conclusion to this
word and points out future research directions.
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2. Terminology

This chapter introduces fundamental knowledge, which we will assume to present in
other sections of this work. It covers an introduction to the internal lane representa-
tion in Section 2.1, a definition of linear Temporal Logic as well as the subset we use
throughout this work, General Reactivity 1 in Section 2.3. In Section 1.3 we cover the
used template specification language and give an overview of the contributions made
in this work in Section 1.4.

2.1. Lanes & Lanelets

The most basic formulation of the problem covered in this work, is one of synthesizing
scenarios for autonomous vehicles from specifications. To create those specifications it
becomes clear that a map representation is required, upon which such a specification
can be defined. For this work we will use the CommonRoad (CR) [30] framework to
define such a map based on lanelets, introduced in [31], as fundamental building block.
These lanelets can be connected together by defining adjacent ones, predecessors and
successors as shown in Figure 2.1.

Figure 2.1.: Lane network showing lanes and lanelets. From [18]

To give further structure to the representation in Figure 2.1 we use the concept of lane
sections introduced in [18], where a lane section Cic collects lanes which are coupled
laterally by combining adjacent lanes. The id of such a section Cic is given by a tuple
id = (ic, il) with ic, il ∈ N and il enumerates the lanes of a section from right to left.
For convenience, we will in the remainder of this work abbreviate the id of a lane in a
lane section Cic by l and the set of all lanes in a given lane network by L. The outgoing
lanes including succeeding, adjacent left and -right lanes for a lane l ∈ L are denoted
by out(l) ⊆ L.

5



2. Terminology

2.2. Curvilinear Coordinates

The description of a vehicle’s position within this work is in curvilinear coordinates
along the current lane l ∈ L, the vehicle occupies at the moment. In curvilinear coordi-
nates the position of a vehicle Vi is described in terms of (si, di) with si, di ∈ R, where
si gives the longitudinal offset from the origin of the vehicle’s lane l. Specifically, si is
not the straight line distance from the origin of l, but the length of an arc aligned to
the center line of l, from l’s origin to the vehicle’s position si. Along this arc di gives
the straight line orthogonal deviation from si [32]. An example of this is provided in
Figure 2.1.

2.3. Linear Temporal Logic

Temporal Logic, in contrast to other logics such as First Order Logic (FOL), allows
for specification of properties over discrete time steps. Such specifications are built
from basic elements, Atomic Propositions (AP). Each Atomic Proposition is a named
Boolean variable a ∈ {true, false} and the set of all Atomic Propositions is denoted by
AP. To combine Atomic Propositions we define the following syntax of linear Temporal
Logic (LTL), which is extended but equivalent to most common definitions found in
the literature [33].

Definition 2.3.1 (Linear Temporal Logic, LTL).

φ ::=true | false | a | ¬a | φ ∧ φ | φ ∨ φ |
Xφ | Fφ | Gφ |
φRφ | φWφ | φMφ | φUφ with a ∈ Ap

Let w be a word over the alphabet 2Ap and φ be a formula then the satisfaction
problem w ⊨ φ is defined as follows:

w ⊨ true w ⊨ Xφ iff w1 ⊨ φ

w ⊭ false w ⊨ Fφ iff ∃k : wk ⊨ φ

w ⊨ a iff a ∈ w0 w ⊨ Gφ iff ∀k : wk ⊨ φ

w ⊨ ¬a iff a /∈ w0 w ⊨ φRψ iff ∀k : wk ⊨ ψ ∨ w ⊨ φMψ

w ⊨ φ ∧ ψ iff w ⊨ φ ∧ w ⊨ ψ w ⊨ φWψ iff ∀k : wk ⊨ φ ∨ w ⊨ φUψ

w ⊨ φ ∨ ψ iff w ⊨ φ ∨ w ⊨ ψ w ⊨ φMψ iff ∃k : wk ⊨ ψ ∧ ∀j ≤ k : wj ⊨ φ

w ⊨ φUψ iff ∃k : wk ⊨ ψ ∧ ∀j < k : wj ⊨ φ

We denote by M(φ) := {w ∈ (2AP)ω | w ⊨ φ} the model of a formula φ, i.e. the set
of all words w that entail φ. Two formulas φ, ψ are then equivalent, denoted by φ ≡ ψ,
if their models are equal:

φ ≡ ψ := M(φ) = M(ψ)

Additionally, we denote Φ as the set containing all formulas φ ∈ Φ of finite length.
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2.3. Linear Temporal Logic

From the rules defined above we can derive the following shorthand notations, which
will be used in the remainder of this work.

φ ⇒ ψ ≡ ¬φ ∨ ψ φ ⇔ ψ ≡ φ ⇒ ψ ∧ ψ ⇒ φ

Satisfiability of a formula φ in LTL is then given if there exists a word w such that
w ⊨ φ. If there exists no such w, we call φ unsatisfiable.

2.3.1. Büchi Automata

A Büchi automaton is a finite state machine, which accepts or rejects infinitely long
inputs w. Such an automaton consists of a set of states and transitions, defined as
follows.

Definition 2.3.2 (Büchi Automaton). The tuple A := (Q, Σ, δ, q0, F) is called a determin-
istic Büchi Automaton, with:

Q : Finite set, called the states of A
Σ : Finite set, called the alphabet of A
δ : Q × Σ → Q : Transition function of A
q0 : q0 ∈ Q, called the initial state of A
F ⊆ Q : Acceptance condition, accepts exactly the state where at least

one state f ∈ F occurs infinitely often in w (Büchi condition).

Where deterministic means, for each state q ∈ Q and input σ ∈ Σ there is exactly one
state q′ such that q′ = δ(q, σ). In other words for each state and input, the next state is
exactly determined.

When a word w ∈ Σω, in the language of words of infinite length Σω, leads to the
automaton visiting a state in F infinitely often, we call it an accepting word, or A accepts
w. To represent such infinitely long words, we split them into two parts: A prefix of
w denoted wp and a cycle wc in which the first state of wc is in F and visited infinitely
often, Inf(wω

c )∩ F ̸= ∅. We can then denote the accepting word w as w = wpwω
c , or for

practical reasons as w = (wp, wc) by omitting the infinite repetition of wc.

Using the above definition, a formula in LTL φ can be translated to a Büchi Automa-
ton A accepting the same model / language, by various known methods [33, 34, 35].
Even though such a translation to a Büchi automaton is widely used for model check-
ing [36], in the general case, the size of such an automaton A is known to be lower
bounded by a doubly exponential function in the number of input states of φ [20].

2.3.2. General Reactivity 1

General checking for satisfiabilty of an LTL formula computationally intractable, but
Piterman et. al. have shown that using a subset of LTL, General Reactivity 1 (GR(1)),
one can check for satisfiability in polynomial time. More precisely, given a formula φ

7



2. Terminology

in GR(1), they have proposed an algorithm synthesizing a satisfying solution to it in
O(N3) number of steps where N is the number of states of φ [21]. The set of all GR(1)
formulas consists of all formulas φ in the following form.

Definition 2.3.3 (General Reactivity 1, GR(1)). A formula φ is in GR(1) if it has the
following structure:θe ∧ Gρe ∧

∧
0<i≤j

GFJe
i

⇒
(

θs ∧ Gρs ∧
∧

0<i≤k

GFJs
i

)

With θe, θs being first order logic propositions, defining the initial state, ρe, ρs propo-
sitions over the current and succeeding states and Je

i , Js
i being justice constrains, i.e.

constraints on what should hold infinitely often. The premise of the implication is
called the environment and the conclusion the system [21]. The goal is then, to for each
true assignment of the environment, find a satisfying one for the system states.

We use this subset in our work, as it not only significantly faster to compute satisfying
solutions for formulas in it, but also Maoz and Ringert have shown that most real-world
LTL formulas have a GR(1) representation [37]. Since the computational benefit of the
algorithm proposed by Piterman et. al. is derived from its symbolic nature, we use
in our work a symbolic implementation of this algorithm implemented by the omega1

tool [22].

Syntactic Sugar

The omega tool contains various “syntactic sugar” capabilities, the most important of
which to our work being integer valued variables [38]. Each such integer variable v has
a fixed integer domain, and allows arithmetic operations to be performed between two
integer variables v op v′ for integer variables v, v′ and an operation op ∈ {<,≤,≥,>
,=, ̸=, ·,÷, %,+,−}. Additionally, operations can also involve integer constants c ∈ Z,
v op c and c op v.

Each of these expressions above yields a truth value which can be used a larger
formula φ. To represent these integer values as binary variables used in GR(1), integer
variables and constants are bitblasted, conceptually a conversion between a first order
logic formula for all values of v to a propositional one. Meaning input variables are
converted to their binary representation and each bit is constrained to correspond to
the original value v or c.

This allows us to leverage the logarithmically sized encoding of integer variables v
when constructing our GR(1) formula in later sections, reducing the number of required
variables and therefore system states.

1https://github.com/tulip-control/omega
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2.4. Scenario Templates

2.4. Scenario Templates

The starting point of the presented approach is a Scenario Template, or simply tem-
plate. We expect this template as well as a lane network as defined in Section 2.1 to be
given and fully specified, meaning that for every vehicle in the template, at least one
constraint involving it is given in every scene. Formally such a template is then defined
as follows.

Definition 2.4.1 (Scenario Template). A Scenario Template T is a tuple with nsc + 1 ∈ N

elements.

T := (A,S1,S2, . . . Snsc) A :=
{

V1, V2, . . . , V|A|
}

Si :=
{

ri
1, ri

2, . . . , ri
|Si |

}
T consists of a set of actors or vehicles A and nsc > 0 scenes. Each of those scenes Si

is a set of relations which represent constraints having to hold for the entirety of that
scene. For two scenes Si,Sj, if i < j then Si has to hold before Sj, defining a temporal
order on scenes in T .

A scene Si holds for some LTL formula, denoted by Si ⊨ φ, which is a minor abuse
of notation meaning the following.

Si ⊨ φ ⇔
(

ri
1 ∧ ri

2 ∧ · · · ∧ ri
|Si |

)
⊨ φ

A specification of behavior for a set of vehicles A over time can then be created using
multiple scenes as defined above. With such a sequence of scenes S1,S∈, . . . Snsc , it
is possible to define multiple desired states and their order for all vehicles in A. For
practical reasons our approach currently expects at least one constraint for every vehicle
V ∈ A in every scene. However, this could be removed with some modifications to the
process solving a scene sequence given in chapter 3.

The semantics of a single scene Si = {ri
1, ri

2, . . . ri
|Si |} are defined by the conjunction

of the relations contained in it as given by definition 2.4.1. These relations can in turn
be one of the ones defined in Table 2.1. By using them in an appropriate LTL formula,
we afford all relations interactions between each other and are able to model complex
behavior.

To give some intuition on the approach presented in this work, we will rely on
the following example and show each major step taken on it. For more complicated
examples see chapter 5, where strive to provide more realistic use cases as well.

Example 1 (Lane Merge). Based on the simple lane network of two parallel lanes merg-
ing together in Figure 2.2, we define a template with two vehicles A = {V1, V2}. In
the first scene they are on the same lane with V1 being behind V2. In the second, we
assert that both vehicles should be on the same lane with V1 having overtaken V2. This
behavior can be expressed with the following template.

9



2. Terminology

Relation Description

OnLane(V, l, s) Vehicle V is on lane l within the curvilinear interval s
IsBehind(Vi, Vj) Vehicle Vi and Vj are on the same lane with Vi behind Vj
OnSameLane(Vi, Vj) Vehicle Vi is on the same lane as Vj
Overtakes(Vi, Vj) Vehicle Vi overtakes Vj at some step between the previous and

current scene

Internal Relations
OnCritical(V, l, L, s) Subclass of OnLane(V,l,s) with the same semantics but for given

critical section with a lane l ∈ L at most one of them can be
active at a given time.

Table 2.1.: Available relations with a definition in natural language

Figure 2.2.: Lane Network for example 1. Brown shows start- and end lanes for both
vehicles. The critical section between intersecting lanes is given in red (more
in Section 3.2.1).

T := (A,S1,S2)

A := {V1, V2}
S1 := {OnLane(V1, (1, 0)), OnLane(V2, (1, 0)), IsBehind(V1, V2)}
S2 := {OnLane(V1, (0, 0)), OnLane(V2, (0, 0)), Overtakes(V1, V2)}

From this template we will create a predicate graph P in Section 3.2, then encode
the result in LTL in Section 3.3 and solve that LTL formula, generating many concrete
templates T sol in Section 3.4, which all satisfy the original template T .

Our expectation for this example is, that many scenarios can be generated from this
simple template where V1 overtakes V2 from on the left and right side respectively, with
both vehicles ending on lane (0, 0) with V2 behind V1. Even though this scenario is very
constrained by design, we will show that even from such a limited template, we are
able to synthesize interesting behavior and model the interaction between vehicles V1

and V2 correctly. This will demonstrate the rich specification approach we present in
this work.

10



3. Satisfying solutions from Templates

Starting from a given scenario template T = (A,S1,S2, . . . ,Snsc), we compute all reach-
able lanes which are on paths satisfying a scene transition Si ⇝ Si+1 ∈ T . Concatenat-
ing them together to get a set of paths from S1 ⇝ S2 ⇝ · · ·⇝ Snsc . We use these paths
to create a graph representation, called a predicate graph P, based on T , which charac-
terizes all valid states in the lane network satisfying the template T and their transitions
within it in Section 3.2. Then we encode P as a LTL formula and piecewise create sat-
isfying transitions between all scenes Si ⇝ Si+1. Such an independent translation is
possible, as each scene Si is assumed specify the entire state all vehicles V ∈ A needed
to satisfy in that scene. For simplicity’ sake’ will not explicitly state this independent
creation of formulas for each scene transition Si ⇝ Si+1 in Sections 3.3 to 3.4, but only
assemble them in Section 3.5 to provide the set of all solved templates which satisfy
T . Using these templates we individually employ an optimization approach by Klis-
chat [18], formulating the problem of synthesizing a concrete CommonRoad scenario
form a solved template as a Mixed-Integer Quadratic Programming (MIQP) problem in
chapter 4. This optimization problem is then solved with the solver Gurobi1, yielding
a fully specified CR scenario for every solved template satisfying T .

By employing this process roughly sketched above and depicted in Figure 3.1 we are
able to create many realistic scenarios with full control over the actions performed by
each vehicle in them.

Reachable
lanes

Predicate
Graph

LTL
Translation

Solving
and enu-
meration

MIQP2

MIQP1

...

MIQPn

Figure 3.1.: High level overview the pipeline synthesizing all satisfying CommonRoad
scenarios from a template

1https://www.gurobi.com/
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3. Satisfying solutions from Templates

3.1. Reachable Lanes

Given a scenario template T and its corresponding lane network, the problem of gen-
erating a concrete scenario from T , can be formulated as an enumeration problem of
all states in the given lane network satisfying the constraints in the template T . How-
ever, using this approach is computationally very inefficient, as a given lane network
can be arbitrarily large, while the template T might constrain the satisfying states in
that lane network to only a small subset of all possible ones, leading to a lot of wasted
computation on infeasible states.

We define a state as an OnLane(V, l, s) relation for a vehicle V ∈ A, a lane l ∈ L
and longitudinal range s on l. By defining the notion of reachability of a state we
are then able to only consider ones which are reachable and thereby largely prune the
considered state space. Such an OnLane(V, l, s) is considered reachable, if there exists
a scene transition Si ⇝ Si+1 with OnLane(V, li, si) ∈ Si and OnLane(V, li+1, si+1) ∈ Si+1

such that:

OnLane(V, l,si) → · · · → OnLane(V, l, s) → · · · → OnLane(V, li+1, si+1) (3.1)

Expressing that, OnLane(V, l, s) is on a path from OnLane(V, li, si) to OnLane(V, li+1, si+1)

of the same vehicle V.
Using this definition of reachability, we then only need to consider OnLane(V, l, s)

relations in all further steps which are reachable, denoted by R(L), as they are the
only ones able to satisfy T , giving completeness of R(L). Computability of R(L) is
also given, as it can be simply computed by formulating the path constraint in Equa-
tion 3.1 as a Bidirectional Search problem from OnLane(V, li, si) to OnLane(V, li+1, si+1)

and adding all OnLane(V, l, s) relations between them to R(L).

3.2. Predicate Graph

Each vehicle defined in the template T has to follow a path of lanes to fulfill transi-
tions between its various constraints. To express those transitions between states, and
optional requirements (which have to be fulfilled in order to move to that state) we
introduce the notion of a predicate Graph.

Definition 3.2.1 (Predicate Graph). A predicate Graph is a directed graph, defined as
follows:

P := (V , E, η) V ⊆ Γ E ⊆ V × V η : E → Φ

With V ⊆ Γ being a subset of all relations, E ⊆ V × V the set of directed Edges
between relations in V , where and edge represents a transition between two relations
for a vehicle. Each edge can also have a label η : E → Φ assigning each edge a condition
expressed as a boolean function φ ∈ Φ. This condition η(e) then has to be satisfied for
an transition e ∈ E to be taken.

12



3.2. Predicate Graph

This predicate Graph is created from the set of all reachable lanes R(L), with the
idea being to for each Lane l ∈ R(L) create an edge between it and all its outgoing
Lanes out(l) ⊆ R(L). Additionally, self loops are inserted for every node, to optionally
allow a vehicle to stay in its current state. Following this basic procedure, the resulting
predicate graph contains all reachable paths through the given map for each vehicle.
Reachability, as in Section 3.1, refers to all paths which start at the OnLane(V, li, si) ∈ Si
constraint for a vehicle in scene Si and end in the next scene’s constraint for that
vehicle OnLane(V, li+1, si+1) ∈ Si+1. Therefore, applying this procedure for all scenes
S1,S2, . . . ,Snsc , yields a predicate graph containing all reachable paths for each vehicle.

3.2.1. Critical Sections

So far each Node in the predicate graph as defined in definition 3.2.1 represents a
lane l ∈ L a vehicle Vi can occupy, but no interaction between vehicles is modelled.
To address this we introduced OnCritical(Vi, l, L, s) relations in Section 2.4. They are
similar to OnLane(Vi, l, s) relations in that they constrain a vehicle Vi to be on lane l
within coordinates s but also define this lane usage to be exclusive. So for each lane
l′ ∈ L of a given critical section there have to exist OnCritical(Vj, l′, L, s′) for each
vehicle Vj and at most one vehicle can be on any of the lanes l′ ∈ L for a given critical
section.

The exact insertion of a critical section OnCritical(V, l, L, s) is performed when a
relation’s lane r.l with r ∈ V intersects another relation’s lane r′.l with r′ ∈ V . Such
an intersection is then iteratively expanded to form a maximal cluster C such that all
relations lanes in the cluster have a non-empty intersection.

r1, r2, . . . , rn ∈ C : I := r1.l ∩ r2.l ∩ · · · ∩ rn.l ̸= ∅

The relations r ∈ C in this maximal cluster are then split into three sections: Before,
within and after the cluster’s intersection I by projecting I onto the relations lane Πr.l I,
where Πr.l is a matrix projecting each point in I onto r.l. We can then transform Πr.l I
from euclidean coordinates to curvilinear ones and define the following new relations:

Definition 3.2.2 (Critical Sections).

rpre := OnLane
(

r.V, r.l,
[

min
p∈r.l

Πr.l(p.s), min
p∈I

Πr.l(p.s)
))

rmid := OnCritical
(

r.V, r.l, C,
[

min
p∈I

Πr.l(p.s), max
p∈I

Πr.l(p.s)
))

rpost := OnLane
(

r.V, r.l,
[

max
p∈I

Πr.l(p.s), max
p∈r.l

Πr.l(p.s)
])

So rpre defines the area before the critical section to be a regular on-lane relation,
by including the longitudinal range (s) up to the intersection of lanes I. Within that
intersection rmid gives the on-critical relation describing that at most one vehicle can

13



3. Satisfying solutions from Templates

be on this intersection at a time. rpost describes the regular on-lane relation after the
intersection I similar to rpre. We then update the predicate graph’s vertices as well as
its edges E accordingly.

V := V \ {r} ∪ {rpre, rmid, rpost}

Additionally, we need to encode the exclusivity of all on-critical relations rmid, which
is not done in the predicate graph but directly in LTL. A detailed description of this
encoding is given in paragraph 3.3.3.

3.2.2. Edge Requirements

Interaction between vehicles was encoded into the predicate graph in the previous
section. We now concern ourselves with adding requirements or constraints which
have to be fulfilled for a vehicle in order to transition from an OnLane(V, l, s) relation
r ∈ V to an outgoing one r′ ∈ out(r).

Each edge of the predicate graph represents a lane-to-lane connection in the given
map. Adding the following assumption, that vehicles have to have a total order in a
lane with respect to their longitudinal coordinate from its start point (r.s), we can assert
that for a vehicle to move from a lane to any of its successors it has to be the first such
vehicle w.r.t. to the ordering. So we obtain the requirement that a vehicle Vi can only
move to a succeeding relation if no vehicle is ahead of it. For every edge (r, r′) = e ∈ E
for vehicle Vi = r.v = r′.v where r.l succeeds r′.l we update the edge’s requirement η(e)
as follows:

Definition 3.2.3 (Edge Requirements).

η(e) := η(e) ∧ ¬

 ∨
Vj∈A
Vj ̸=Vi

IsBehind(Vi, Vj)


So a vehicle Vi can only move from a relation r to r′ if there is an edge whose

requirement η(e) is fulfilled and there exists no vehicle Vj ∈ A such that Vi is behind
Vj.

3.2.3. Example

By applying the results of the previous sections, specially Definitions 3.2.2 to 3.2.3,
to example 1 we create the predicate graph in Figure 3.2. In it one can clearly see
the two connected components for vehicles 0, 1 and their start OnLane(Vi, l, s) relations
in S1 colored in blue with the respective ends in S2 in orange. Between those, the
inserted critical sections are colored in red, corresponding to the red overlapping area
in Figure 2.2. Movement between the states is restricted by only allowing to transition
(r, r′) ∈ E to a succeeding state r′ if the respective condition η((r, r′)), annotated on

14



3.3. LTL Translation

OnLane(0, (1,0), (10.0, 169.6)) OnCritical(0, (2,0), {(2,0), (3,0)}, (10.0, 30.8))!0behind1

OnLane(0, (1,1), (10.0, 169.6))

OnLane(0, (0,0), (10.0, 157.0))!0behind1

OnLane(1, (1,0), (10.0, 169.6))
OnCritical(1, (2,0), {(2,0), (3,0)}, (10.0, 30.8))!1behind0

OnLane(1, (1,1), (10.0, 169.6))

OnCritical(0, (3,0), {(2,0), (3,0)}, (10.0, 31.1))
!0behind1

!0behind1

OnLane(1, (0,0), (10.0, 157.0))!1behind0

OnCritical(1, (3,0), {(2,0), (3,0)}, (10.0, 31.1))
!1behind0

!1behind0

Figure 3.2.: Predicate graph for example 1.

directly on the edges is fulfilled. For edges (r, r′) ∈ E, which do not have an annotation,
no condition needs to be met in order to move to their next states η((r, r′)) = true.

3.3. LTL Translation

In this section, we present our approach for converting the Predicate Graph P defined
in Section 3.2 to an equivalent representation in LTL. We start by covering P to LTL,
by enumerating its nodes and edges and generating an equivalent expression for each
(Section 3.3.1). As these expressions are built on the relations defined in Section 2.4 we
additionally present an encoding for each of them in Section 3.3.3. This is non-trivial,
as our target language is not LTL generally, but GR(1), a very expressive subset of LTL,
but a subset nevertheless. Therefore, a general process converting for a LTL formula to
one in GR(1) is presented and applied to our specific use cases.

3.3.1. Predicate Graph Encoding

In Section 3.2 we defined the predicate graph for a template. It encodes all feasible
states which satisfy the template’s constraints and models the requirements to reach
those states. In this section we will elaborate on how we encode this predicate graph
to LTL expressions. The main idea being, that for each outgoing edge of a node we
determine all edges starting from that node whose requirements are entailed by the
considered edge. Then we add a formula constraining movement from a state to only
the outgoing states which are on any of the before mentioned entailed edges.

Concretely, for nodes r, r′ ∈ V and an outgoing edge (r, r′) ∈ E let the set R :=
{(r, r′′) | (r, r′′) ∈ E ∧ η((r, r′′)) ⊨ η((r, r′))}, with r′′ being an arbitrary outgoing state,
denote the set of all edges whose requirements are entailing η((r, r′)) Using this we
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3. Satisfying solutions from Templates

can define the following function to encode a node and its outgoing edges in P:

G

r ⇒
∨

(r,r′)∈E

η((r, r′)) ∧

 ∨
(r,r′′)∈R

Xr′′

 (3.2)

So at all points in time, if an r = OnLane(V, l, s) relation holds, we consider each
outgoing edge (r, r′) ∈ E and determine its requirements η((r, r′)). Then if η((r, r′))
holds, V can only move to any of the outgoing states r′′ if the requirements of that
transition η((r, r′′)) are also fulfilled by η((r, r′)). In particular, since η((r, r′)) entails
itself, a transition from r to r′ is possible.

3.3.2. Node identifiers

Instead of encoding each relation r ∈ V directly as an LTL Literal defined in defini-
tion 2.3.1, we propose an identifier based encoding. The main observation here is that
by assigning each lane in the lane network a unique identifier α(r) ∈ N0, we can ex-
press the position of each vehicle by this identifier and allow comparisons between iden-
tifiers. This allows us to for two relations r, r′ ∈ V , express rules such as α(r) = α(r′)
without specifying the exact relations to compare and additionally provides for a more
efficient encoding than regular boolean variables due to a binary encoding for integers
in omega. However, instead of just assigning each node in the predicate graph an ID
based on its lane, we propose a more efficient encoding.

By observing that a predicate graph P as defined in Section 3.2, has exactly one con-
nected component C ⊆ V per vehicle Vi ∈ A, and Vi can only move to relations (lanes)
within its connected component C, we assign IDs in a consecutive manner {0, 1, 2, . . . }
for each connected component. However, when doing so we make sure that if two
nodes OnLane(Vi, l, s), OnLane(Vj, l, s) reference the same lane, their IDs are equal and
vice versa. Precisely we require the following to hold.

∀r, r′ ∈ V : r.l = r′.l ∧ r.s = r′.s ⇔ α(OnLane(Vi, l, s)) = α(OnLane(Vj, l, s)) (3.3)

This is required, as we check the equality of identifiers of nodes in paragraph 3.3.3
to determine if two vehicles are on the same lane. Using this encoding the relation for
each vehicle Vi is uniquely determined by its α value. By additionally to the constraint
in Equation 3.3 assigning α values in each connected component C, such that for each
vehicle the range of the set α(C) = {α(c) | c ∈ C} is minimal, we improve the efficiency
of the encoding drastically. This due to each vehicle Vi with its connected component
C in paragraph 3.3.3 being assigned a GR(1) variable with the domain α(C). The range
of α(C) therefore directly determines the number of auxiliary variables required to
represent this variable (in a binary encoding). The exact Python procedure for obtaining
such an α assignment is given in Listing 3.1.

For more details on usage of the identifier based encoding see Section 3.3.3.
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3.3. LTL Translation

Listing 3.1. Python code for node ID assignment satisfying Equation 3.3
def alphas(nodes):

"""
Assigns every node in a connected component a unique id.
"""
components = defaultdict(set)
for node in nodes:

components[node.relation.vehicle_id].add(node)

same_lane_groups: Dict[OnLane, Set[Node]] = defaultdict(set)
for node in nodes:

r = copy(node.relation)
r.vehicle_id = -1
same_lane_groups[r].add(node)

same_lane: Dict[Node, Set[Node]] = dict()
for group in same_lane_groups.values():

for node in group:
same_lane[node] = group - {node}

shared_nodes = lambda component: len(
[node for node in component

if node in same_lane[node] and same_lane[node]]
)

alpha = dict()
idx = -1
for c in sorted(components.values(), key=shared_nodes):

for node in c:
if node not in alpha:

idx += 1
alpha[node] = idx
for other in same_lane[node]:

alpha[other] = idx
return alpha
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3. Satisfying solutions from Templates

v0=1 v0=3
!0behind1

v0=0

v0=4!0behind1

v1=1
v1=3!1behind0

v1=0

v0=2 !0behind1

!0behind1

v1=4!1behind0

v1=2
!1behind0

!1behind0

Figure 3.3.: Node ID encoding for all Vehicles V with v0 and v1 representing ν in Equa-
tion 3.4

3.3.3. Relation Encoding

In Section 2.4 we defined the different types of relations we use as constraints for the
concrete templates synthesized in this work. They are: OnLane(V, l, s), OnCritical(V, l, L, s),
IsBehind(Vi, Vj), OnSameLane(Vi, Vj) and Overtakes(V, l, L, s). Firstly, we will, in this
section, focus on translating basic Relations expressing the various states a vehicle can
be in and then progress to high level ones such as Overtakes(V, l, L, s) which are built
upon them. In general, we express the minimal amount of information necessary to
define a constraint, due to our goal of generating as many feasible scenarios as possi-
ble. Especially when using our approach for synthesizing concrete scenarios covered
in Chapters 3 to 5, this becomes relevant.

OnLane The most basic relation we concern ourselves with is the OnLane(V, l, s) one.
It requires a vehicle V to be on a lane l and within lane l its longitudinal offset has to
be in the given interval, V.s ∈ s. Using the definition of a unique identifier α for every
relation in a connected component of the predicate graph P, covered in Section 3.3.2,
we can encode this OnLane(V, l, s) relation of a vehicle in LTL as follows.

Since all OnLane(V, l, s) relations V are assigned a unique identifier α, we introduce
an integer valued LTL variable ν to track the state of each vehicle V, where:

ν = α(OnLane(V, l, s)) (3.4)

So every vehicle V is represented by a variable ν, whose integer value tracks the
OnLane(V, l, s) relation V is in over time. The main advantage of such an encoding is
that for each vehicle only an integer having approximately the number of states, as V
can reach in P needs to be represented, which uses logarithmically many variables in
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3.3. LTL Translation

the domain size of ν using a binary encoding2. Additionally, we do not need to specify
an exclusivity behavior for different values of ν, which immediately implies that the
OnLane(V, l, s) relations V can be in are mutually exclusive. For our running example
example 1 such an encoding is given in Figure 3.3.

OnCritical Critical sections are areas in the lane network, which at most a single
vehicle can occupy at a given time. As defined in Section 3.2.1, all relations forming a
critical section OnCritical(V, l, L, s) from the intersecting lanes in L can have at most
one vehicle at a time on any of them. Encoding this positional constraint on a vehicle
V is handled in the same way as described in the previous section. To be consistent
with this procedure, we define an OnCritical(V, l, L, s) relation to be a subclass of the
corresponding OnLane(V, l, s) relation. In doing so, both relation types can be regarded
the same when convenient, as in the previous section, but an additional exclusivity can
be defined across all OnCritical(V, l, L, s) relations having the same set of intersecting
lanes L. To achieve this explicit exclusivity, we define the following operators.

Definition 3.3.1 (LTL Exclusivity). For a set of relations R the notion of exactly one
r ∈ R having to be true at any given time step is encoded as follows:

Ex(R) :=
∨

r∈R
r

∧
o∈R∧o ̸=r

¬o

When considering the encoding for Ex(R) one can easily see that the size of the re-
sulting formula scales quadratically with the size of R. Even though such an encoding
is non-optimal, we use it here for its simplicity and make sure to keep R as small as
possible for practical use.

To allow for at most one relation r ∈ R to be satisfied we define the Max1(R) operator:

Max1(R) := Ex(R) ∨
∨

r∈R
¬r

For the special case of R = {r1, r2} we can simplify to Max1(R) = ¬r1 ∧ ¬r2.

Then let C be a critical section where for all OnCritical(V, l, L, s) ∈ C the set of
intersecting lanes L is the same. For each such critical sections C1, C2, . . . , Cn we encode
exclusivity within each section in the following way.

G (Max1(C1) ∧ Max1(C2) ∧ · · · ∧ Max1(Cn)) (3.5)

With this definition, we therefore assert that each critical section C can only have
at most one satisfied relation within it at any given time. This guarantees that our
encoded predicate graph is, if a solution exists, traversed collision free.

2Since ν is binary encoded, the number of representable states is always of the form 2n − 1 for some
minimal n ∈ N.
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3. Satisfying solutions from Templates

OnSameLane For specifying that two vehicles have to be on the same lane in the given
lane network, but omitting which lanes exactly, we introduced the OnSameLane(Vi, Vj)

relation in Section 2.4. Based on the encoding of an OnLane(V, l, s) relation and its
identifier α(OnLane(V, l, s)) described in detail in paragraph 3.3.3 it’s trivial to encode
an OnSameLane(Vi, Vj) relation. As with Equation 3.3 we constrain the identifiers of
two relations with the same vehicles to be equal, which is carried forward to the LTL
encoding by tracking a vehicle’s identifier using the LTL variable ν in Equation 3.4. We
encode an OnSameLane(Vi, Vj) relation for two vehicles Vi, Vj ∈ A by the following.

OnSameLane(Vi, Vj) ⇔ νi = νj (3.6)

In natural language this means that two vehicles Vi, Vj are on the same lane if and
only if their corresponding LTL variables νi, νj are equal.

IsBehind In Section 2.4 we defined an IsBehind(Vi, Vj) relation to represent for the
vehicles Vi, Vj ∈ A, being on the same lane with Vi behind Vj. However, the exact position
of Vi, Vj on their common lane is not specified. In our LTL representation we do not
model continuous values (i.e. s-offset of Vi, Vj) and will only do so after solving for a
concrete scenario in chapter 4. Therefore, our approach currently does not constrain the
maximum number of vehicles on a lane, and resolves this only during the optimization
phase.

To encode the IsBehind(Vi, Vj) relation we firstly, need to encode movement from
one relation to all its outgoings in P. This is achieved by comparing the identifiers for
vehicles Vi, Vj. If at some time step Vi, Vj are on different lanes νi ̸= νj, but they move to
the same lane on the next step X(νi = νj), then either Vi has to be behind Vj or the other
way around. For the case that Vj does not move to a new lane in the next time step,
this clearly implies that Vj stays on its lane and Vi therefore has to be behind it. Since
the behavior of Vj in this example is symmetric, we arrive at the following formula.

∀vi ̸= vj ∈ A : G
(
(νi ̸= νj ∧ νj = X(νj) ∧ X(νi = νj)) ⇒ X

(
IsBehind(Vi, Vj)

))
(3.7)

Here, we assert that if Vi and Vj are not on the same lane at some point in time, but
move to a common one in the next step, and Vj does not switch lanes, then Vi has to be
behind Vj in the next step. However, this constraint omits one type of behavior, namely
if Vi and Vj are on adjacent lanes and Vi performs a lane change to Vj’s lane then it
forces Vi to arrive on its target lane behind Vj, omitting that Vi might also insert before
Vj. This behavior was unable to be addressed in the time constraints of this work and
is left as a future improvement.

To ensure the consistency of an IsBehind(Vi, Vj) relation over time, we assert that if
Vi and Vj are on the same lane at the current time step νi = νj as well as the next and
IsBehind(Vi, Vj) is set, then it also has to be set for the next time step.
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3.3. LTL Translation

vi ̸= vj ∈ A :G
(
νi = νj ∧ IsBehind(Vi, Vj) ∧ X(νi = νj) ⇒ X(IsBehind(Vi, Vj))

)
∧G

(
νi = νj ∧ IsBehind(Vj, Vi) ∧ X(νi = νj) ⇒ X(IsBehind(Vj, Vi))

)
The above constraint then describes this behavior for both cases of IsBehind(Vi, Vj)

and IsBehind(Vj, Vi). Also, if Vi, Vj are on the same lane, some behind relation has
to be set. This constraint is required as vehicles might start on the same lane but all
combinations of behind relations are supposed to be solved for so no order for Vi, Vj is
set in the template, which is simply described by:

∀Vi ̸= Vj ∈ A : G
(
νi = νj ⇒ IsBehind(Vi, Vj) ∨ IsBehind(Vj, Vi)

)
(3.8)

Lastly, for vehicles Vi, Vj only Vi can be behind Vj or the other way around, but not
both at the same time.

∀Vi ̸= Vj ∈ A : G
(

Max1
({

IsBehind(Vi, Vj), IsBehind(Vj, Vi)
}))

(3.9)

Overtaking In this section we will cover the encoding of an overtaking event between
two vehicles Vi and Vj. For the purpose of generating as many scenarios from a given
template, we intentionally leave this formulation quite simplistic, as this will allow the
solver presented in Section 3.4 the most degrees of freedom.

In the following we will consider an overtaking maneuver to be one where two vehi-
cles are at some point in time on the same lane with one driving behind the other. Then
the further back vehicle of the two has to switch to a different lane from the leading one,
and in the end the two vehicles have to end up on a common lane again, but with the
previously following vehicle leading and the leading one now following. This scenario,
although it might seem to be overly simplistic, it is an accurate enough expression of
the state sequence followed in an overtaking maneuver and leads to interesting behav-
ior as can be seen in chapter 5. If desired, it could however be expanded to include
more constraints on the movements of involved vehicles by extending the state descrip-
tion and following the LTL encoding procedure given below. Some of those possible
improvements are outlined in [28].

Based on the overtaking scenario described in the previous section, we define the
following sequence of states α, β, γ, which are expressed using the predicates we de-
fined in Section 2.4. They describe the encoding of an Overtakes(Vi, Vj) relation in the
following.

α :=OnSameLane(Vi, Vj) ∧ IsBehind(Vi, Vj) (3.10)

β :=¬OnSameLane(Vi, Vj) (3.11)

γ :=OnSameLane(Vi, Vj) ∧ IsBehind(Vj, Vi) (3.12)
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(a) Transition based Büchi automaton

0start

1

2

3

α

¬α

β

¬β

γ

¬γ

true

(b) Simplified edge based Büchi automaton

Figure 3.4.: Deterministic Büchi automata for Equation 3.13

Noting that by using the predicates OnSameLane(Vi, Vj) and IsBehind(Vi, Vj) directly
in an LTL formula, we implicitly reference the encoding for these predicates given in
paragraph 3.3.3. Finally, we then need to convert the sequence α, β, γ to LTL, where the
states have to follow one another. However, in the natural language description of an
overtaking scenario we implicitly assumed that an arbitrary amount of time can pass
between each state α, β, γ. Such an encoding in LTL is expressed as follows, with the
states α, β, γ being mutually exclusive.

F(α ∧ F(β ∧ F(γ))) ∧ G (Ex({α, β, γ})) (3.13)

However, as we express all our formulas in a subset of LTL, namely GR(1) to check
them for satisfiability in polynomial time (more on this process in Section 3.4), we need
to convert this expression to GR(1), which does not include nested F operators [21].

Overtaking Automaton Fortunately, Maoz, Ringert and Jacobs have presented a gen-
eral approach to the issue of converting a LTL formula to GR(1) if such a conversion
is possible [37, 39]. Maoz and Ringert propose to convert the desired LTL formula
to a deterministic Büchi automaton and give an automatic conversion to GR(1), while
Jacobs performs the same deterministic Büchi automaton translation and converts the
result manually. In the following we will apply this conversion technique manually to
Equation 3.13 resulting in an equivalent GR(1) specification.

The first step in such a conversion is the translation of the formula in LTL to a
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3.3. LTL Translation

deterministic Büchi automaton, where deterministic means that the automaton can
only be in one state at a time and that state is always uniquely determined by its
inputs. Such a conversion can be automatically performed by tools such as spot [34],
which build a more general form of Büchi automaton (Transition Generalized Büchi
Automaton) from a LTL formula like the one in Equation 3.13 and convert it to a
deterministic Büchi automaton. The result of this translation is given in Figure 3.4a
(minimized using a SAT approach). For representing these automata we give two
different perspectives, one transition based and an edge based one. In the transition
based automaton from Figure 3.4a transitions are annotated with the exact boolean
formulas that are required for the automaton to take that transition. So in our case
the projection of each boolean literal α, β, γ all formulas at each transition. In the edge
based one, given in Figure 3.4b, we omit this exact specification of each literal and only
give the dominant literals describing each edge. Such a simplification is equivalent,
as the states making up α, β, γ are already mutually exclusive by their encoding in
Section 3.3.3.

Based on the edge based deterministic Büchi automaton in Figure 3.4b we can now
encode the chain of states α, β, γ with their definition in Equations (3.10) to (3.12) in
GR(1) by introducing a new variable oi ∈ {0, 1, . . . , 3} to describe the current state the
automaton is in. With this oi each edge in the automaton can then be expressed in
GR(1) using the following formula.

G(oi = q ∧ σ ⇒ X(oi = δ(q, σ)) (3.14)

Where q ∈ Q is a state and σ ∈ Σ is a word in the alphabet of the automaton. δ(q, σ) is
the transition function giving a succeeding state for a state q and input word σ (details
in Section 2.3.1). Equation 3.14 intuitively then describes that if the automaton is in
a given state q and an input word σ is given then it has to be in state δ(q, σ) in the
next state, which exactly encodes the transition function δ. Therefore, the semantics of
the resulting formula are the same as the ones expressed in the original deterministic
Büchi automaton.

For our case of converting Equation 3.13 to GR(1), we get the following result when
applying Equation 3.14 to the automaton in Figure 3.4b.

Definition 3.3.2 (Overtaking Automaton encoding).

oi = 0 (3.15)
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3. Satisfying solutions from Templates

G((oi = 0 ∧ OnSameLane(Vi, Vj) ∧ IsBehind(Vi, Vj)) ⇒ X(oi = 1))

∧G((oi = 0 ∧ ¬OnSameLane(Vi, Vj) ∨ IsBehind(Vi, Vj)) ⇒ X(oi = 1))

∧G((oi = 1 ∧ ¬OnSameLane(Vi, Vj)) ⇒ X(oi = 2))

∧G((oi = 1 ∧ OnSameLane(Vi, Vj)) ⇒ X(oi = 2)) (3.16)

∧G((oi = 2 ∧ OnSameLane(Vi, Vj) ∧ IsBehind(Vj, Vi)) ⇒ X(oi = 3))

∧G((oi = 2 ∧ ¬OnSameLane(Vi, Vj) ∨ ¬IsBehind(Vj, Vi))) ⇒ X(oi = 3))

∧G((oi = 3) ⇒ X(oi = 3))

GF(oi = 3) (3.17)

The above formulas fully encode the automaton in GR(1) by Equation 3.15 adding
to the initial state θs. Transitions are expressed as described in the previous section
and explicitly given in Equation 3.16 and added to the formula’s system transitions ρs.
Lastly, Equation 3.17 specifies the justice constraint which should hold infinitely often
in the future and gets added to Js

1.

3.4. GR(1) solving and enumeration

On of the main contributions of this work is, to generate multiple scenarios from a
given template. Since any such template is expressed as an LTL formula φ using the
methods described in the previous section, we will in this section cover, how to generate
multiple distinct satisfying solutions for any such given formula φ.

Piterman et al. have shown that a reduced set of LTL, GR(1), can be solved in O(N3)

time, where N is the number of states of the input formula [21]. This drastically im-
proves on the previously known doubly exponential lower time bound for general LTL
formulas [20]. We utilize the result by Piterman et al. by way of the omega solver pre-
sented in Section 2.3.2. However, since the approach presented in [21] can only be used
to check for realizability of a specification and then constructs an automaton realizing
this solution if one exists, enumerating all solutions of such a system is not directly
possible.

3.4.1. Exclusion Automaton

Therefore, we present an approach of enumerating satisfying solutions to a GR(1) spec-
ification φ. The main idea here is that by excluding the solution w(i) for step i we can
generate a new specification φ(i+1), which is satisfiable if and only if a new solution
w(i+1) exists. However, since any solution to a GR(1) specification is a word w of infinite
length, we can not exclude every step of w directly, but split it into a prefix of finite
length wp and a finite cyclic component wc such that w = wpwcwc . . . and only exclude
the finite prefix wp. We do so, as the last step of wc is the first step in w satisfying the
specification φ.
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3.4. GR(1) solving and enumeration

0start 1 2 . . . n − 1 n
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¬w(i)
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w(i)
n−1 w(i)

n

¬w(i)
n

true
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Figure 3.5.: Edge based deterministic Büchi automaton for excluding of a previously
seen word w(i)

In detail, we perform this exclusion using the automaton in Figure 3.5. It graphically
represents the process of excluding future words w(j)

p for j > i by matching each step

w(i)
1 , w(i)

2 , . . . , w(i)
n of w(i)

p and staying in state n if a complete match to w(i)
p was found,

moving to state n+ 1 and staying in it if w(j)
p differs at any point from w(i)

p . Semantically
we can now define state n to be equivalent to f alse and state n + 1 to true. To express
this graph in GR(1), we use the following conversion, introducing a new variable si ∈J0..n + 1K representing the state of the automaton.

Definition 3.4.1 (Exclusion Automaton encoding).

si = 0 (3.18)

G((si = 0 ∧ w(i)
1 ) ⇒ X(si = 1))

∧G((si = 0 ∧ ¬w(i)
1 ) ⇒ X(si = n + 1))

∧G((si = 1 ∧ w(i)
2 ) ⇒ X(si = 2))

∧G((si = 1 ∧ ¬w(i)
2 ) ⇒ X(si = n + 1))

...

∧G((si = n − 1 ∧ w(i)
n ) ⇒ X(si = n))

∧G((si = n − 2 ∧ ¬w(i)
n ) ⇒ X(si = n + 1))

∧G((si = n) ⇒ X(si = n))

∧G((si = n + 1) ⇒ X(si = n + 1)))

(3.19)

GF(si = n + 1) (3.20)
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3. Satisfying solutions from Templates

Since we use the same process as in paragraph 3.3.3 where we’ve presented an ar-
gument for the validity of this conversion, it is by the same logic sound and complete
here as well. Identically, Equation 3.18 is added to the system initial state θs in the
final GR(1) formula. Equation 3.19 exactly encodes the transition relation for the ex-
clusion automaton in Figure 3.5 which is added to the transition constraints ρs and
Equation 3.20 encodes the automaton’s goal state, which gets added to Js

1 as a justice
constraint. Using these GR(1) formulas we can therefore exclude w(i)

p from all future

solutions while adding only a number of states linear in the length of w(i)
p . By repeating

this approach until the formula is no longer satisfiable, we enumerate all its solutions.

3.4.2. BDD Caching

The omega solver we utilize for generating a satisfying solution w(i)
p for a GR(1) for-

mula φ, first converts it to a graph-based representation of that formula, namely a
Binary Decision Diagram (BDD) introduced in [40], using the Python library dd3. Even
though, the approach presented in the previous section on excluding each word w(i)

p
to enumerate all satisfying words of a formula φ in GR(1) only increases the resulting
formula length linearly, it still requires a complete conversion of φ to BDDs. This pro-
cess however, is computationally expensive and through the simple observation that a
formula φ′ generated by the exclusion process from φ still contains φ entirely, we cache
the BDD for φ and convert the added formulae by the exclusion process separately to
BDDs. Then both are cached for future use and combined to form φ′. By applying this
process successively, only the formulae added by the exclusion process are converted
to BDDs when enumerating the solutions for a template, while combination of BDDs
(φ ∧ φ′) can be performed efficiently using the procedure defined in [40].

3.4.3. GR(1) Expression

Encoding of a scene transition in a template T from Si ⇝ Si+1 for Si,Si+1 ∈ T is
done by assigning the conjunction of all relations in Si =

{
ri

1, ri
2, . . . , ri

|Si |

}
to the initial

system state of our GR(1) formula θs.

θs = ri
1 ∧ ri

2 ∧ · · · ∧ ri
|Si | (3.21)

The succeeding scene’s relations Si+1 =
{

ri+1
1 , ri+1

2 , . . . , ri+1
|Si+1|

}
are similarly con-

joined together and added to the first justice constraint Js
1 of the formula.

Js
1 = ri+1

1 ∧ ri+1
2 ∧ · · · ∧ ri+1

|Si+1| (3.22)

If not explicitly stated otherwise, we then add the remaining general constraints
presented in the previous section to the system transition ρs, with initial and final states

3https://github.com/tulip-control/dd
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3.5. Accepting Word Parsing

for the overtaking (definition 3.3.2) and exclusion automata (definition 3.4.1) added to
θs and Js

1 respectively. Based on these we give the following GR(1) formula.

Definition 3.4.2 (GR(1) Expression).

(true ∧ G(true) ∧ GF(true)) ⇒ (θs ∧ Gρs ∧ GFJs
1)

As given by the above definition, we have found this GR(1) formula to be sufficient
in our work. By defining all environment variables to true we cause our solver omega
to find solutions irrespective of the environment. Each solution to the formula in defi-
nition 3.4.2 then, by construction, satisfies all constraints in the original template T .

3.5. Accepting Word Parsing

Based on the automaton satisfying the GR(1) formula we gave in definition 3.4.2, we in
this section cover the parsing of it to a new scenario template T sol , which concretizes
the original template T . This concretization, will provide all intermediate scenes nec-
essary, for transitioning between the ones specified in T , therefore giving a complete
specification of all vehicles in T over all time steps.

In definition 3.4.2 we gave the definition of our GR(1) formula, which can be inter-
preted as a Streett Game [41]. The solution to which is expressed as an automaton,
where each state is an input to the system with transitions between them. Since this
automaton satisfies a GR(1) formula whose justice constraints have to occur infinitely
often, each trace w of this automaton is infinitely long. Therefore, we split this word
w in to a prefix wp and cyclic component wc of finite length such that w = wpwcwc . . .
similar to Section 3.4. The specific point at which to start for this cyclic component wc

is selected such that the first step of wc is the first in w to satisfy the justice constraint
Js
1. Since we only define a single justice constraint in Section 3.4.3 and all justice con-

straints in a GR(1) formula have to be fulfilled infinitely often, such separation wp, wc

has to exist with the steps in wc repeating infinitely often in w. An example of this split
for a given automaton solving our running example problem, is given in Figure 3.6.

Each state in the accepting word sections wp, wc defined above is made up of a
Boolean function (specifically a conjunction of literals) b ∈ Φ, defining the values of
each literal in the original GR(1) formula to constitute a satisfying run. By parsing ev-
ery such formula b using the parser lark4, we reconstruct the corresponding relations
and their states from b. Since every formula b corresponds to one discrete state the
system needs to reach in order to satisfy the original GR(1) formula, we collect this set
of parsed relations in a new scene S . When applying this process for every state in
wp and the first one in wc we construct a new sequence of scenes (Si,1,Si,2, . . . ,Si+1,ni).
This new sequence then gives a valid transition between two scenes in the original tem-
plate from scene Si = Si,1 to Si+1 = Si+1,ni . By solving each GR(1) formula for every
scene transition Si ⇝ Si+1 in the original template T , we obtain one such sequence

4https://github.com/lark-parser/lark
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3. Satisfying solutions from Templates

ν0 = 3 ∧ ν1 = 3 ∧ o1 = 0 ∧ IsBehind(0, 1) = truestart

ν0 = 3 ∧ ν1 = 4 ∧ o1 = 1

ν0 = 0 ∧ ν1 = 4 ∧ o1 = 2

ν0 = 1 ∧ ν1 = 2 ∧ o1 = 2

ν0 = 1 ∧ ν1 = 1 ∧ o1 = 2 ∧ IsBehind(1, 0) = true

ν0 = 1 ∧ ν1 = 1 ∧ o1 = 3 ∧ IsBehind(1, 0) = true

wp

wc

Figure 3.6.: Accepting Büchi automaton for example 1. The split of w = wpwcwc . . . is
given by the respective boxes.

of concrete scenes for every transition. Concatenating them together while leaving out
duplicates, we can create the following solved template T sol for a given template T .

Definition 3.5.1 (Solved Template T sol).

T sol :=
(
A,S1,1,S1,2, . . . ,Si−1,ni−1 ,Si,1,Si,2, . . . ,Snsc

)
= (A,S1, . . . ,Snsol )

(3.23)

The last simplification in the above equation is a re-indexing of scenes in the same
order for simplicity’ sake’, with nsol ≥ nsc.
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4. Optimization based Scenario Synthesis

Based on a concrete scene T sol for one of our solved GR(1) formulas, we will in the
following concern ourselves with synthesizing a concrete scenario from it. Based on
work by Klischat [18] we formulate this as a convex optimization problem with the
constraints adapted from the previously generated GR(1) solution. So every relation
specified in that solution will be expressed as a set of linear constraints on the state of
its associated vehicle. This section is intentionally kept brief as most of its content is
work by Klischat [18] and the primary purpose of generating concrete scenarios using
this approach in this work is to visually verify the specified behavior defined in the
previous sections.

Concrete trajectories are synthesized over a time horizon h ∈ N, in multiples of
a time step, by formulating the problem as a Mixed-Integer Quadratic Programming
(MIQP) whose solution gives a trajectory for all vehicles. For computational efficiency
reasons this problem is split up into two independently solvable MIQPs, one for the
longitudinal position of the vehicle and one for the lateral one. In the following we will
first show a formulation for the longitudinal problem and using its solution will solve
for the lateral positions of each vehicle [18, 19].

4.1. Switching Times

Solving for a concrete solution in each of the optimization problems outlined above,
requires the progression of scenes in the solved template S1,S2, . . . ,Snsol to be expressed
as well [18]. To this end for each scene Si with i ∈ J1..nsolK, Klischat defines a switching
time ki ∈ J0..hK when Si becomes active. The predicates defined in Si then have to hold
until the switching time of the next scene Si+1. Since specifying exact switching times
before knowing the solution of the optimization problem is difficult, Klischat proposes
to set upper and lower bounds for the duration of each scene δi as follows.

∀i ∈ J1..nsolK : hmin ≤ δi ≤ hmax with hmin, hmax ∈ N

From these bounds on the duration of a scene δi switching times ki are encoded as a
binary vector βi ∈ {0, 1}h with i ∈ J1..nsolK whose values switch at ki.

βi(k) =

{
0 if k < ki

1 else

The required scene progression is expressed via linear constraints on βi.
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4. Optimization based Scenario Synthesis

β1(0) = 1 (4.1)

∀k ∈ J1..hK, ∀i ∈ J1..nsol − 1K :βi(k) ≤ βi+1(k)

Here at the initial time step Klischat requires β1(0) = 1 as an initial condition, express-
ing that S1 has to hold at the first time step. For all time steps k : βi(k) ≤ βi+1(k) gives
the desired constraint on scene Si coming before Sj with 1 ≤ i < j ≤ nsol . If any given
scene Si is active or not is then easily given by αi ∈ {0, 1}h.

∀k ∈ J0..hK : αi(k) =

{
βi(k)− βi+1(k) if 0 ≤ i < nsol

βi(k) else

The constraints on duration of scene Si are then given by:

∀k ∈ J0..hK : hmin ≤
h

∑
k=0

αi(k) ≤ hmax (4.2)

4.2. Expressing Relations as Mixed-Integer Constraints

After solving for a template T sol the position of each vehicle Vi ∈ A is specified by
a corresponding OnLane(Vi, l, s) relation. In contrast to the original template T , T sol

specifies all intermediate lanes as well, such that all lanes visited by a vehicle Vi are
fully specified by its OnLane(Vi, l, s) relations in T sol . Within a given lane, two vehicles
Vi, Vj might still occupy it at the same time, in which case a IsBehind(Vi, Vj) relation is
also given. Therefore, it is sufficient to only express OnLane(Vi, l, s) and IsBehind(Vi, Vj)

relations for all vehicles Vi, Vj ∈ A as constraints in the optimization problem.
In the optimization approach by Klischat interaction between different vehicles is

achieved by specifying a reference path RVi for every vehicle Vi [18]. Such a path is
essentially an in-order concatenation of all lanes, vehicle Vi visits in T sol . Using this
reference path, the vehicle’s position is specified in curvilinear coordinates on RVi , i.e.
its longitudinal state xs,Vi and the lateral state xd,Vj are given by the following equations.

xs,Vi = (sVj , ṡVi , s̈Vi) xd,Vi = (dVi , ḋVi , d̈Vi) (4.3)

With sVi being the longitudinal- and dVi the lateral offset of Vi with respect to RVi (more
on curvilinear coordinates in Section 2.2).

Satisfying the relations of a template T sol for each vehicle Vi with respect to its
reference lane RVi is then easily expressed with the projection operator πRVi

(s), which
projects curvilinear coordinates with respect to a lane l to the vehicles reference lane
RVi .

1. OnLane(Vi, l, s)
A vehicle Vi is on lane l and within that lane’s s-range s = (s, s), if the longitudi-
nal position of Vi, sVi is within the required range (s, s) when projected onto its
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4.3. Longitudinal Problem

reference lane RVi . Additionally, its lateral offset dVi has to be within the lane’s
minimal and maximal lateral offset d(sVi), d(sVi) at point sVi .

OnLane(Vi, l, s) ⇔ πRVi
(s) ≤ sVi ≤ πRVi

(s) ∧ d(sVi) ≤ dVi ≤ d(sVi) (4.4)

2. IsBehind(Vi, Vj)

Since a IsBehind(Vi, Vj) relation is only given in T sol if Vi and Vj are on the
same lane, we can simply express this as a constraint on the longitudinal offset
of Vi, having to be less or equal than the one of Vj. However, since Vi, Vj might
be on different reference lanes RVi , RVj , Klischat introduces a common reference
point xre f somewhere on the common lane of Vi, Vj. By then constraining the
vehicle’s offsets with respect to xre f , we can correct for this difference in reference
lane coordinate systems. Additionally, a minimal safety distance r ∈ R is given,
which the vehicle’s distance to each other cannot not fall below.

IsBehind(Vi, Vj) ⇔ sVi − πRVi
(xre f ) + r ≤ sVj − πRVj

(xre f )

⇔ sVj − sVi ≥ πRVj
(xre f )− πRVi

(xre f ) + r
(4.5)

The constraints in Equations (4.4) to (4.5) can then be rewritten as general linear
functions and directly used in the optimization problem. A large constant M is used to
only activate them in their corresponding scene Si [18].

g
i
(xs, k) > ci(k)− M(1 − αi(k)) (4.6)

gi(xs, k) > ci(k) + M(1 − αi(k)) (4.7)

4.3. Longitudinal Problem

Solutions for the longitudinal problem are always with respect to some user-defined
cost function Js(xs, us, w), where the index s refers to constraints pertaining to the lon-
gitudinal problem. xs = (xT

s,1, . . . , xs,|A|), us = (
...
s 1, . . . ,

...
s |A|) refer to the states and jerk

for all vehicles weighted by w ∈ Rρ.
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4. Optimization based Scenario Synthesis

Definition 4.3.1 (Longitudinal optimization problem).

argmin
xs(0),us

b

∑
k=0

Js(xs(k), us(k), w) (4.8)

∀k ∈ J0..hK : xs(k + 1) = Asxs(k) + Bsus(k) (4.9)

us,min ≤ us(k) ≤ us,max

xs,min ≤ xs(k) ≤ xs,max

∀i ∈ J0..nsolK : g
i
(xs, k) < c(k) + M(1 − αl(k)) (4.10)

gi(xs, k) > c(k) + M(1 − αl(k))

β0(0) = 1 (4.11)

∀i ∈ J0..nsol − 1K : βi(k) ≤ βi+1(k)

hmin ≤
h

∑
k=0

α(k) ≤ hmax (4.12)

The above MIQP system then minimizes Equation 4.8 with respect to the dynamic
constraints in Equation 4.9 describing the physical properties of each vehicle. Equa-
tion 4.10 gives the relational constraints and Equations (4.11) to (4.12) encode the switch-
ing times.

4.4. Lateral Problem

After solving the longitudinal problem Klischat uses its solution to solve the lateral
problem and synthesize the trajectory for each vehicle. This problem is simpler, as a
solution to the longitudinal problem already includes solutions for the switching times
βi(k), reducing the lateral problem to a quadratic problem. Additionally, using the
solution to the longitudinal problem, the exact lanes a vehicle is on for every time step
k are known, which is used to compute the lateral bounds [d(s(k)), d(s(k))] for every k.

Definition 4.4.1 (Lateral optimization problem).

argmin
ud(·)

h

∑
k=0

Jd(xd(k), ud(k), dre f (k), w) (4.13)

∀k ∈ J0..hK : xd(k + 1) = Adxd(k) + Bdud(k) (4.14)

ud,min(k) ≤ ud(k) ≤ ud,max

xd,min(k) ≤ xd(k) ≤ xd,max

dL(s(k)) ≤ xd(k) ≤ dL(s(k)) (4.15)

By combining the solutions to the longitudinal- and lateral problems, the exact state
for every vehicle at every time step k ∈ J0..hK is specified and a CommonRoad scenario
is created. Examples for such scenarios are given in chapter 5.
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5. Results

We demonstrate the effectiveness of our approach on two scenarios, which are chosen
to represent two distinct settings in autonomous driving. The first is a multi vehicle
highway scenario in which we demonstrate overtaking of different vehicles and uncon-
strained interactions between them. The second is an urban scenario in which we show
how our generated scenarios behave when tightly constrained by their environment.
We also empirically evaluate the applicability of the results for both settings.

Since our contribution in this work is primarily on formula generation and enumer-
ation, we will not focus on the optimization aspect of scenario synthesis, but instead
on satisfiability enumeration. All parameters required for the optimization approach
by Klischat [18], are given in Tables A.1 to A.3, with the specific ones for each template
(∆t, th, max iteration) given separately in Table 5.1 and Table 5.2. All our evaluation is
performed on an Intel i7-8565U mobile processor with 16 GB RAM.

5.1. Highway Scenario

One of the use cases for our approach is to create highly dynamic scenarios on high-
ways. We consider the event of one vehicle overtaking another on a main carriage
highway. Additionally, we add another unconstrained vehicle parallel to the merging
ones, representing another traffic participant. The lane network for this scenario is
given in Figure 5.1 with the respective template in the following.

Parameter Value

∆t 0.2 (s)
th 12 (s)
max iteration 100

Table 5.1.: Highway Scenario parameters
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Figure 5.1.: Lane network with color coded OnLane(Vi, l, s) specifications for each vehi-
cle from the respective template

Example 2 (Highway Scenario Template).

Thw =(A,S1,S2)

A =(0, 1, 2)

S1 ={OnLane(0, (2, 3), [10.0, 63.3]), OnLane(1, (2, 3), [10.0, 63.3]),

OnLane(2, (2, 4), [10.0, 63.3]), IsBehind(0, 1)}
S2 ={OnLane(0, (0, 4), [48.6, 87.3]), OnLane(1, (0, 4), [48.6, 87.3]),

OnLane(2, (0, 4), [48.6, 87.3]), Overtakes(0, 1),

IsBehind(1, 0), IsBehind(1, 2)}

A visual representation of this template Thw is given in Figure 5.1. In natural lan-
guage, this template defines vehicles 0, 1 to be on the same lane (2, 3) with 0 behind
1 in the first scene S1. Simultaneously, vehicle 2 is on the adjacent lane (2, 4) to vehi-
cles 0, 1. In the next scene we require 0 to have overtaken 1 with both ending on lane
(0, 4), while vehicle 2 also moves from its starting lane to (0, 4). On that lane, as 1 was
overtaken, we assert it to behind vehicles 1, 2.
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Figure 5.2.: Computation times for the highway scenario in seconds for 100 iterations.

The resulting predicate graph from Thw in given in Figure A.1. However, since the
predicate graph for a template characterizes all states all vehicles can move to, while
satisfying the template, the resulting graph in this example is quite large. But one
can clearly make out the individual connected components, constituting the reachable
states for each vehicle. Also since the predicate graph is encoded in full into a GR(1)
formula, this one is also large (cf. Listing A.1).

5.1.1. Computational Performance

From such a GR(1) formula we describe in Section 3.4 and chapter 4 how we enumerate
all solutions to it and synthesize concrete scenarios those solutions. In this section we
will cover the practicability of our approach by evaluating the computation times for
each of the before mentioned major steps of solving the GR(1) formula and synthesizing
a concrete scenario through an optimization problem.

Scaling In Figure 5.2 we give the computation times required of each generated so-
lution to the GR(1) formula for the template Thw (cf. Listing A.1) for the first 100
satisfying solutions to that template. From this plot it becomes immediately apparent,
that computation time for solving each new GR(1) formula increases with the num-
ber of previously found solutions. This is the case, as we ensure uniqueness of our
generated GR(1) solutions, by excluding each previously found solution by appending
its negation to the next formula (more details in Section 3.4). This causes the num-
ber of states of each new formula to increase linearly, as each exclusion adds a new
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variable si with approximately a constant number of states1, matching future solutions
against previously seen ones. As the time required to satisfy any GR(1) formula scales
as O(N3), where N is the number of states of the formula [21] we expect to see cubic
scaling in our computation times for each successive GR(1) solution as well.

Outliers Also, when considering the absolute computation times for each GR(1) for-
mula, we sometimes observe large outliers, shown in orange in Figure 5.2. Even though,
we have given time on a logarithmic axis for visualization purposes, those outliers still
dominate all other values. We postulate that this is due to caching employed by our-
selves in Section 3.4.2 as well as caching internal to our solver omega, as for the first
solution the required GR(1) solve time is large and is only a fraction of that for most
other ones. One plausible explanation for the behavior, is that by defining the GR(1)
formula for a successive solution to be an extension of the previous one (details in Sec-
tion 3.4), work done to convert the previous formula to BDDs is reused and only the
newly added conjunctions need to be considered. This theory also explains the rare
continued outliers after the first solution, as there could plausibly be formulas where
so many previous solutions were excluded, that omega could not reuse previous work
(computed fixed points) and have to resolve large parts of the input formula.

Optimization Considering the optimization times in Figure 5.2 shown in blue, we
see them clustered into roughly two groups. One greater than the GR(1) solution times
and less. This is due to the optimization approach used in this work only having been
able to solve 16 of the 100 generated solutions by our approach, where each infeasible
optimization problem failed within a few seconds. We assume that this behavior is
due to the complexity of the template Thw and some solutions to it requiring extreme
behavior by the associated vehicles to satisfy. We then assume this behavior infeasible
with the provided vehicle model and given time horizon in Table 5.1.

Another possible explanation is, that overtaking maneuvers, as defined in Thw have
some inconsistency, when expressed an optimization problem as given by Klischat.
That line of argument is backed up by Klischat’s own synthesis approach also has
trouble correctly synthesizing overtaking maneuvers [18]. However, due to the lim-
ited scope of this thesis we were unable to investigate this hypothesis and consider it
possible future work.

For solutions to our GR(1) formula, which are feasible we do however, see an ex-
pected approximately constant time required to solve their associated optimization
problem, as all solutions solve for similar behavior on the same lane network.
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Figure 5.3.: Representative synthesized solution for the highway template Thw at six
different times 0 ≤ t ≤ th. Light blue shows future positions of a vehicle.

5.1.2. Scenario Evaluation

In the following we consider the behavior of vehicles in the 19 solutions to the tem-
plate Thw where the optimization problem is feasible. One such solution is shown in
Figure 5.3 with the full set of all solutions to the templates presented, being available
alongside this work2.

We specifically show the scenario in Figure 5.3 out of the 19 synthesized ones, as it is
one of the clearest to represent in picture form and still shows behavior representable
for the entire set of solutions. In it, one can see that, just as defined in the template Thw
the vehicles 0, 1 stat on lane (2, 3) with vehicle 0 behind 1 and 2 adjacent to them. With
the remainder of the defined behavior in Thw also present.

For instance, at time t = 2.0 one sees vehicle 0 starting its overtaking maneuver from
on the right adjacent lane of 1 with vehicle 2 being unaffected by vehicles 0, 1. This right
overtaking maneuver might at first seem erroneous, as it violates traffic code in right-
handed traffic systems. But when specifying the semantics of overtaking maneuvers in
definition 3.3.2 we did not give a direction for doing so, allowing overtaking maneuvers
to occur on both sides of the overtaken vehicle. However, a constraint preventing such
right overtaking maneuvers could easily be added in the future.

Following the overtaking maneuver, all vehicles merge onto their target lane, as
shown in Figure 5.3 at time t = 10.0, with vehicle 1 being behind vehicles 0, 2. Since
we did not specify an order between vehicles 0, 2 for S2 in Thw, this is left as a degree
of freedom within the corresponding GR(1) formula and was chosen in this solution as
vehicle 0 being behind 2. But the other possible order, vehicle 2 behind 0 is also present

1The number of states depends on the number of steps required to transition from one scene to the next
Si ⇝ Si+1, which is bounded by the longest satisfying path in the given lane network (i.e. constant).

2https://github.com/rasaford/scenario-generation
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Parameter Value

∆t 0.25 (s)
th 18.75 (s)
max iteration 100

Table 5.2.: Urban Scenario parameters

within the synthesized scenarios, showing how the approach presented in this work is
able to handle partially specified orders and enumerate degrees of freedom left within
a template.

5.2. Urban Scenario

The second considered use case of this work is one of urban scenarios. Since the
approach used to synthesize satisfying solutions is the same across all of this work, we
see similar patterns in the resulting scenarios here, as discussed in the previous section.
Therefore, we will only point out differences to the general findings in the previous
section and refer the reader to Section 5.1 for more context and details.

We consider the following template for the remainder of this section. Based on
the lane network in Figure 5.4 we define four vehicles at a T-junction. Two of them
approach the junction from the north going south and two different vehicles approach
from the south and go west. When doing so these vehicles have to cross a common
critical section, as their paths necessarily cross. For this critical section, we only allow a
single vehicle at a time to be on one of the lane sections contained within. This behavior
can be formally defined as follows.

Example 3 (Urban Scenario Template).

Turb =(A,S1,S2)

A =(0, 1, 2, 3)

S1 ={OnLane(0, (6, 0), [10.0, 35.1]), OnLane(1, (6, 0), [10.0, 35.1]),

OnLane(2, (5, 0), [10.0, 77.4]), OnLane(3, (5, 0), [10.0, 77.4])

IsBehind(0, 1), IsBehind(2, 3)}
S2 ={OnLane(0, (9, 0), [31.0, 80.0]), OnLane(1, (9, 0), [31.0, 80.0]),

OnLane(2, (1, 0), [10.0, 36.6]), OnLane(2, (1, 0), [10.0, 36.6])

IsBehind(0, 1), IsBehind(2, 3)}

With the corresponding visualization in Figure 5.6 one can see that Turb defines vehi-
cles 0, 1 to start on lane (6, 0) with 0 behind 1 on that lane. Vehicles 2, 3 similarly start
on lane (5, 0) with vehicle 2 behind 3. Both groups of vehicles 0, 1 and 2, 3 are then
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5.2. Urban Scenario

Figure 5.4.: Lane network with color coded OnLane(Vi, l, s) specifications for each vehi-
cle from the respective template

constrained to move to their respective end lanes (9, 0) and (1, 0), while maintaining
their order. To satisfy these constraints, both groups have to cross the common critical
section (marked in red) in serial, meaning only a single vehicle can occupy it at a given
time.

Similarly to the previous example, we give the Predicate graph for Turb in Figure A.2.
Even though, the template Turb and its associated map are more constrained than the
previous one, the number of satisfying states to Turb is still large, resulting in many
nodes in the Predicate graph.

5.2.1. Computational Performance

Enumerating the solutions satisfying Turb gives a similar picture as in the previous
section. Based on the computation times given in Figure 5.5, an increase in the time
required to solve each successive GR(1) formula (orange) is visible. Interestingly, the
increase in time for this template is sharper than the one in the previous section. This
possibly indicates that over the course of enumerating the first 100 solutions to the
template Turb, its more constrained specification causes our solver omega to have to
search longer for novel satisfying assignments.
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Figure 5.5.: Computation times for the urban scenario in seconds for 100 iterations.

Such a hypothesis is also supported by the relatively large number of outliers in the
computation times to solve each GR(1) formula, as each new solution might be unable
to reuse past work (fixed points), increasing the required solution time.

Optimization For this template Turb the optimization approach by Klischat [18] was
able to synthesize scenarios for all the 100 solutions our approach generated. Therefore,
the computation times for solving each optimization problem are overall in a single
cluster, in contrast to the previous section, and are approximately constant as expected,
due to all problems being very similar. We assume the larger scale variations visible to
be up to random behavior of the test system, independent of our approach.

On the stark difference is the number of feasible optimization problems for template
Turb when compared to Thw, we hypothesize this to be due to the lower velocity inter-
actions between vehicles present in all solutions to Turb.

5.2.2. Scenario Evaluation

In Figure 5.6 we show one representative synthesized scenario from the set of all 100
such solved ones. We choose this specific one, as it most clearly shows the behavior
of all four vehicles defined by the template Turb. However, all templates show similar
behavior as the one presented in here.

From Figure 5.6 one can immediately see at time t = 0 that all four vehicles are on
their required lanes as given by Turb. From those starting lanes, vehicles 0, 1 first cross
the intersection, having to do so in serial for all vehicles, as we require it to be a critical
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Figure 5.6.: Representative solution for the urban template Turb at six different times t.
Light blue shows future positions of a vehicle.

section to prevent vehicles colliding. Then vehicles 2, 3 cross the same critical section
one after another and continue to their end lane.

As one can see from the behavior in Figure 5.6 between times t = 3.0 and t = 6.2, even
though vehicles 2, 3 are just ahead of the intersection, vehicles 0, 1 cross regardless. This
violates priority conditions for unregulated intersection in right-handed traffic systems.
As required by law, vehicles 0, 1 would have to stop in front of the intersection and
wait for vehicles 2, 3 to cross if those are sufficiently close. This proximity requirement
is most definitely fulfilled in the example in Figure 5.6. Just as in the previous section,
this behavior could be added to our approach, as formalizations of this rule exist [6],
but were not added to this work due its limited scope.

In contrast, the set of all synthesized scenarios for Turb also includes ones where
vehicles 2, 3 traverse the critical section before 0, 1, as our approach enumerates all
degrees of freedom in a template, with the traversal order of the critical section in
being one of them.

5.3. Discussion

Based on the templates presented in the previous two sections (cf. Sections 5.1 to 5.2)
we, in this section, give additional observations on the approach presented in this work.

Formula length scaling In the previous two sections, we only considered the com-
putation times for generating successive solutions from a single template. However,
it is also relevant to consider the scaling across different templates of increasing size.
Concerning this we were already from the two templates Thw, Turb able to see a large
increase in the time required to generate each solution for Turb compared to Thw. This is
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likely due to the larger number of vehicles, as each additional vehicle can, in the worst
case, add all reachable states in a lane network to the predicate graph. Additionally,
for vehicles Vi, Vj ∈ A in a template, all IsBehind(Vi, Vj) relations with i < j are added
to be able to exactly specify an arbitrary order of vehicles on a given lane. As each
IsBehind(Vi, Vj) relation is encoded by a new variable (cf. paragraph 3.3.3), the num-
ber of variables scales quadratically with the number of vehicles. Since the algorithm
by Piterman et al. for satisfying any GR(1) formula scales cubically with the number of
states of the given input formula [21], we expect the time for satisfying a GR(1) formula
generated from our approach to scale with O(|A|6), where |A| is the size of the set of
all vehicles.

A more efficient encoding would be, to instead of encoding each IsBehind(Vi, Vj)

relation directly, to encode it by an integer variable bi ∈ J0.. |A|K. Each IsBehind(Vi, Vj)

relation could then be encoded as follows.

∀Vi, Vj ∈ A, i < j : IsBehind(Vi, Vj) ⇔ bi = j

Since integer variables are binary encoded, this encoding would have the benefit of
encoding each IsBehind(Vi, Vj) relation with a logarithmic number of variables. The

overall scaling would then be in O
(
|A|3 log3 |A|

)
which is a significant improvement

over the previous method. However, we were not able to explore this idea in more
detail in this work.

Scene synchronization When parsing a solution to one of the GR(1) formulas pre-
sented in this work (cf. Section 3.5), we create a new scenario template from T sol

from it, where the behavior of all vehicles is fully specified. One such template could
abstractly be the following.

T sol = (A,S1,S2, . . . ,Snsol )

...

Sk = {. . . , OnLane(Vi, li, si), OnLane(Vj, lj, sj), . . . }
...

Within Sk there are at least two on-lane relations specifying the behavior of vehicles
Vi, Vj ∈ A to be on their respective lanes li, lj and within those lanes in the longitudinal
intervals si, sj. However, lets consider the case where max si − min si ≫ max sj − min sj,
so the range of the interval si is a lot larger than the one of sj. Since in the associated
optimization problem for this solved template (cf. chapter 4), we require all constraints
in Sk to hold for the entire duration of that scene, we have implicitly created coupled
the behavior of vehicles Vi and Vj because in the same time as Vi has to traverse the
section si on li, Vj has to traverse its, a lot smaller, section sj on lj.
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This rather theoretical example, could however lead to invalid synthesized scenarios,
because to satisfy the constraints in Sk in the above example, either the vehicle Vi would
have to traverse its section si slower, or vehicle Vj do so faster. Since such a coupling
was most likely not intended in the template T sol , we consider it invalid behavior.

Similar optimal solutions Lastly, since we synthesize a concrete scenario via an opti-
mization problem for each solution generated by our approach, but enumerate GR(1)
solutions, not synthesized scenarios and see many similar synthesized scenarios in the
set of all solutions to a template. This likely due to a minimal reordering of relations in
the solution to a GR(1) formula, already classifying as an unseen solution to the tem-
plate. However, such a reordering can be arbitrarily small. Therefore, when solving
the associated optimization problem with this slightly changed solution, we see a simi-
lar result. Because the optimal solution for two such slightly different GR(1) solutions
might be very similar under the same cost function Js(xs(k), us(k), w).

To encourage more different solutions and therefore provide more meaningful test
cases, one could change the enumeration procedure described in Section 3.4 to not only
exclude the exact versions of previously given solutions, but also minor reorderings.
Such a more general exclusion, however still needs to make sure all sufficiently different
solutions to a GR(1) formula are still enumerated, taking care not to exclude ones with
too much interesting behavior.
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6. Conclusion & Future Work

We presented an approach for synthesizing concrete scenarios from a simple template
specifying behavior over time for a number of vehicles on a given lane network. By
representing this problem in LTL we were able to model complex behavior of all ve-
hicles in the template as well as give specificity for defining templates. This allows
us to define very tightly constrained scenarios as well as ones with many degrees of
freedom within the same system. Additionally, the LTL representation affords for a full
coupling between vehicles at all time steps, allowing for complex interactions between
them to emerge.

By viewing this approach as an extension of the work by Klischat [18], we are in
a similar vain able to generate scenarios efficiently with a high degree of specificity,
removing the need to search large databases for desired behavior. Also, once interesting
desired behavior has been identified, our approach is able to generate large amounts of
scenarios satisfying that template. Therefore, we deem this work is highly applicable
to the domain of falsification testing.

6.1. Lessons Learned

Working on this thesis, a primary takeaway was that using different solvers can make a
large difference with respect to the concepts one can express in any given formula and
the time required to find a solution to that formula. In the process of creating this thesis
we worked with a number of different ones and came to the following conclusions.

Spot [34] is a very powerful solver, as it supports the entire LTL language but there-
fore scales poorly with formula size due to the lower doubly exponential bound proven
by Pnueli and Rosner [20]. But Spot was still useful, both as a starting point, and to
verify the transformation of an LTL formula to GR(1) for modelling overtaking and so-
lution enumeration. when satisfying a formula, but only supports GR(1) and therefore
comes with the limitations discussed throughout this work. Also, documentation for
it is lacking. Lastly, omega1 was instrumental for the results in this work, as it sup-
ports a richer syntax than gr1c, namely comparisons between integer valued variables,
which allowed for a much conciser and performant expression of IsBehind(Vi, Vj) and
OnLane(Vi, l, s) rules.

1https://github.com/tulip-control/omega
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6.2. Future Work

This includes some minor improvements, such as parallelizing the BDD conversion our
used solver omega. There already exists a parallel BDD framework by van Dijk and de
Pol [42] which is integrated in omega’s underlying BDD library dd, but our preliminary
testing showed that its use in omega still has major problems. Additionally, traffic rules
could be integrated to limit our synthesized scenarios to more realistic ones. Work by
Maierhofer et al. [6] already does this for a more general set of Temporal Logic, Signal
Temporal Logic (STL), but expression of similar rules in GR(1) seems feasible. Also,
the ordering of generated solutions in our synthesis process could be improved, as
in this work we did not concern ourselves with comparing synthesized solutions. By
defining preference relations and integrating them into directly into the solver, search
for desired solutions could be performed very efficiently.

Most importantly however, is the before mentioned falsification testing. The ap-
proach presented in this work could be used in a closed loop testing framework for
an autonomous vehicle motion planning algorithm, by interacting with that algorithm
to identify critical scenarios. Then using the templating system detailed in this work,
one could employ a sampling technique to generate new scenarios for interactions the
motion planner finds particularly challenging. If our approach is able to generate sce-
narios which are realistic, as validated by e.g. [5], but which the motion planner exhibits
unsafe behavior for, we have falsified it. If this is not the case, more sampling could be
used or our approach extended to generate more critical scenarios. From the amount
of passed tests and the criticality as well as realism of the synthesized scenarios, a
confidence score could then be computed, indicating the safety of the motion planning
algorithm.
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Parameter Value

l 5 (m)

w 2 (m)

amin −3 (m/s2)

amax 9.81 (m/s2)

|amax| 9.81 (m/s2)

vmax,lat 5 (m/s)

Table A.1.: Vehicle Dynamics

Parameter Value

mind,lng 5 (m)

jmin −0.15 · 10−15 (m/s3)

jmax 0.15 · 10−15 (m/s3)

vmin 0 (m/s)
vmax 20 (m/s)

Table A.2.: Longitudinal Planning
Paramters

Parameter Value

jmax,lat 1 · 104 (m/s3)

Qs, Qd diag([5, 1, 1])
Rs, Rd 0.5

Table A.3.: Lateral Planning Parameters

ENV:;
SYS:0behind1 0behind2 1behind0 1behind2 2behind0 2behind1 v0 v1 v2;
ENVINIT:;
ENVTRANS:;
ENVGOAL:;
SYSINIT:(v0 = 17)
& (v1 = 4)
& (v2 = 15);

SYSTRANS: G!((0behind1 & 1behind0))
& G!((0behind2 & 2behind0))
& G!((1behind0 & 0behind1))
& G!((1behind2 & 2behind1))
& G!((2behind0 & 0behind2))
& G!((2behind1 & 1behind2))
& G((v0 = 1) -> ((!((0behind1 | 0behind2)) & X(((((v0 = 1) | (v0 = 5)) | (v0 = 9)) | (v0 = 12)))) | X((((v0 = 1) | (v0 = 5)) | (v0

= 9)))))↪→
& G((v0 = 10) -> ((!((0behind1 | 0behind2)) & X(((((v0 = 3) | (v0 = 5)) | (v0 = 10)) | (v0 = 14)))) | X((((v0 = 3) | (v0 = 10)) |

(v0 = 14)))))↪→
& G((v0 = 11) -> X((((v0 = 5) | (v0 = 7)) | (v0 = 11))))
& G((v0 = 12) -> X((((v0 = 5) | (v0 = 9)) | (v0 = 12))))
& G((v0 = 13) -> ((!((0behind1 | 0behind2)) & X(((((v0 = 1) | (v0 = 5)) | (v0 = 9)) | (v0 = 13)))) | X((((v0 = 5) | (v0 = 9)) | (v0

= 13)))))↪→
& G((v0 = 14) -> ((!((0behind1 | 0behind2)) & X((((((v0 = 10) | (v0 = 13)) | (v0 = 14)) | (v0 = 17)) | (v0 = 18)))) | X(((((v0 =

10) | (v0 = 14)) | (v0 = 17)) | (v0 = 18)))))↪→
& G((v0 = 17) -> X((((v0 = 14) | (v0 = 17)) | (v0 = 18))))
& G((v0 = 18) -> X((((v0 = 9) | (v0 = 14)) | (v0 = 18))))
& G((v0 = 2) -> X(((v0 = 2) | (v0 = 7))))
& G((v0 = 3) -> ((!((0behind1 | 0behind2)) & X(((((v0 = 3) | (v0 = 6)) | (v0 = 10)) | (v0 = 11)))) | X((((v0 = 3) | (v0 = 6)) | (v0

= 10)))))↪→
& G((v0 = 5) -> X((((((v0 = 1) | (v0 = 5)) | (v0 = 11)) | (v0 = 12)) | (v0 = 13))))
& G((v0 = 6) -> ((!((0behind1 | 0behind2)) & X((((v0 = 3) | (v0 = 6)) | (v0 = 7)))) | X(((v0 = 3) | (v0 = 6)))))
& G((v0 = 7) -> X((((v0 = 2) | (v0 = 7)) | (v0 = 11))))
& G((v0 = 9) -> X(((((v0 = 1) | (v0 = 9)) | (v0 = 12)) | (v0 = 13))))
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& G((v0 = v1) -> (0behind1 | 1behind0))
& G((v0 = v2) -> (0behind2 | 2behind0))
& G((v1 = 0) -> ((!((1behind0 | 1behind2)) & X(((((v1 = 0) | (v1 = 4)) | (v1 = 8)) | (v1 = 9)))) | X((((v1 = 0) | (v1 = 4)) | (v1 =

8)))))↪→
& G((v1 = 1) -> ((!((1behind0 | 1behind2)) & X(((((v1 = 1) | (v1 = 5)) | (v1 = 9)) | (v1 = 12)))) | X((((v1 = 1) | (v1 = 5)) | (v1

= 9)))))↪→
& G((v1 = 10) -> ((!((1behind0 | 1behind2)) & X((((((v1 = 3) | (v1 = 4)) | (v1 = 5)) | (v1 = 8)) | (v1 = 10)))) | X(((((v1 = 3) |

(v1 = 4)) | (v1 = 8)) | (v1 = 10)))))↪→
& G((v1 = 11) -> X((((v1 = 5) | (v1 = 7)) | (v1 = 11))))
& G((v1 = 12) -> X((((v1 = 5) | (v1 = 9)) | (v1 = 12))))
& G((v1 = 13) -> ((!((1behind0 | 1behind2)) & X(((((v1 = 1) | (v1 = 5)) | (v1 = 9)) | (v1 = 13)))) | X((((v1 = 5) | (v1 = 9)) | (v1

= 13)))))↪→
& G((v1 = 2) -> X(((v1 = 2) | (v1 = 7))))
& G((v1 = 3) -> ((!((1behind0 | 1behind2)) & X(((((v1 = 3) | (v1 = 6)) | (v1 = 10)) | (v1 = 11)))) | X((((v1 = 3) | (v1 = 6)) | (v1

= 10)))))↪→
& G((v1 = 4) -> X(((((v1 = 0) | (v1 = 4)) | (v1 = 8)) | (v1 = 10))))
& G((v1 = 5) -> X((((((v1 = 1) | (v1 = 5)) | (v1 = 11)) | (v1 = 12)) | (v1 = 13))))
& G((v1 = 6) -> ((!((1behind0 | 1behind2)) & X((((v1 = 3) | (v1 = 6)) | (v1 = 7)))) | X(((v1 = 3) | (v1 = 6)))))
& G((v1 = 7) -> X((((v1 = 2) | (v1 = 7)) | (v1 = 11))))
& G((v1 = 8) -> X(((((v1 = 0) | (v1 = 8)) | (v1 = 10)) | (v1 = 13))))
& G((v1 = 9) -> X(((((v1 = 1) | (v1 = 9)) | (v1 = 12)) | (v1 = 13))))
& G((v1 = v2) -> (1behind2 | 2behind1))
& G((v2 = 0) -> ((!((2behind0 | 2behind1)) & X((((v2 = 0) | (v2 = 9)) | (v2 = 14)))) | X(((v2 = 0) | (v2 = 14)))))
& G((v2 = 1) -> ((!((2behind0 | 2behind1)) & X(((((v2 = 1) | (v2 = 5)) | (v2 = 9)) | (v2 = 12)))) | X((((v2 = 1) | (v2 = 5)) | (v2

= 9)))))↪→
& G((v2 = 11) -> X((((v2 = 5) | (v2 = 7)) | (v2 = 11))))
& G((v2 = 12) -> X((((v2 = 5) | (v2 = 9)) | (v2 = 12))))
& G((v2 = 13) -> ((!((2behind0 | 2behind1)) & X(((((v2 = 1) | (v2 = 5)) | (v2 = 9)) | (v2 = 13)))) | X((((v2 = 5) | (v2 = 9)) | (v2

= 13)))))↪→
& G((v2 = 14) -> ((!((2behind0 | 2behind1)) & X((((((v2 = 0) | (v2 = 13)) | (v2 = 14)) | (v2 = 15)) | (v2 = 16)))) | X(((((v2 = 0)

| (v2 = 14)) | (v2 = 15)) | (v2 = 16)))))↪→
& G((v2 = 15) -> X(((((v2 = 3) | (v2 = 14)) | (v2 = 15)) | (v2 = 16))))
& G((v2 = 16) -> X(((((v2 = 3) | (v2 = 5)) | (v2 = 14)) | (v2 = 16))))
& G((v2 = 2) -> X(((v2 = 2) | (v2 = 7))))
& G((v2 = 3) -> ((!((2behind0 | 2behind1)) & X((((((v2 = 3) | (v2 = 6)) | (v2 = 11)) | (v2 = 15)) | (v2 = 16)))) | X(((((v2 = 3) |

(v2 = 6)) | (v2 = 15)) | (v2 = 16)))))↪→
& G((v2 = 5) -> X((((((v2 = 1) | (v2 = 5)) | (v2 = 11)) | (v2 = 12)) | (v2 = 13))))
& G((v2 = 6) -> ((!((2behind0 | 2behind1)) & X((((v2 = 3) | (v2 = 6)) | (v2 = 7)))) | X(((v2 = 3) | (v2 = 6)))))
& G((v2 = 7) -> X((((v2 = 2) | (v2 = 7)) | (v2 = 11))))
& G((v2 = 9) -> X(((((v2 = 1) | (v2 = 9)) | (v2 = 12)) | (v2 = 13))))
& G((((v0 != v1) & (v1 = X(v1))) & X((v0 = v1))) -> X(0behind1))
& G((((v0 != v2) & (v2 = X(v2))) & X((v0 = v2))) -> X(0behind2))
& G((((v0 = 1) & (v1 = 1)) & (v2 = 1)) -> X((((v0 = 1) & (v1 = 1)) & (v2 = 1))))
& G((((v0 = v1) & 0behind1) & X((v0 = v1))) -> X(0behind1))
& G((((v0 = v1) & 1behind0) & X((v0 = v1))) -> X(1behind0))
& G((((v0 = v2) & 0behind2) & X((v0 = v2))) -> X(0behind2))
& G((((v0 = v2) & 2behind0) & X((v0 = v2))) -> X(2behind0))
& G((((v1 != v0) & (v0 = X(v0))) & X((v1 = v0))) -> X(1behind0))
& G((((v1 != v2) & (v2 = X(v2))) & X((v1 = v2))) -> X(1behind2))
& G((((v1 = v2) & 1behind2) & X((v1 = v2))) -> X(1behind2))
& G((((v1 = v2) & 2behind1) & X((v1 = v2))) -> X(2behind1))
& G((((v2 != v0) & (v0 = X(v0))) & X((v2 = v0))) -> X(2behind0))
& G((((v2 != v1) & (v1 = X(v1))) & X((v2 = v1))) -> X(2behind1));

SYSGOAL:G(F(((v0 = 1) & (v1 = 1)) & (v2 = 1)));

Listing A.1.: GR(1) formula for the highway scenario derived from Thw

ENV:;
SYS:0behind1 0behind2 0behind3 1behind0 1behind2 1behind3 2behind0 2behind1 2behind3 3behind0 3behind1 3behind2 v0 v1 v2 v3;
ENVINIT:;
ENVTRANS:;
ENVGOAL:;
SYSINIT:0behind1
& 2behind3
& (v0 = 1)
& (v1 = 1)
& (v2 = 6)
& (v3 = 6);

SYSTRANS: G!((0behind1 & 1behind0))
& G!((0behind2 & 2behind0))
& G!((0behind3 & 3behind0))
& G!((1behind0 & 0behind1))
& G!((1behind2 & 2behind1))
& G!((1behind3 & 3behind1))
& G!((2behind0 & 0behind2))
& G!((2behind1 & 1behind2))
& G!((2behind3 & 3behind2))
& G!((3behind0 & 0behind3))
& G!((3behind1 & 1behind3))
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& G!((3behind2 & 2behind3))
& G((v0 = 0) -> X((v0 = 0)))
& G((v0 = 1) -> ((((v0 != 4) & !(((0behind1 | 0behind2) | 0behind3))) & X(((v0 = 1) | (v0 = 4)))) | X((v0 = 1))))
& G((v0 = 2) -> ((!(((0behind1 | 0behind2) | 0behind3)) & X(((v0 = 0) | (v0 = 2)))) | X((v0 = 2))))
& G((v0 = 3) -> ((!(((0behind1 | 0behind2) | 0behind3)) & X(((v0 = 2) | (v0 = 3)))) | X((v0 = 3))))
& G((v0 = 4) -> ((!(((0behind1 | 0behind2) | 0behind3)) & X(((v0 = 3) | (v0 = 4)))) | X((v0 = 4))))
& G((v0 = v1) -> (0behind1 | 1behind0))
& G((v0 = v2) -> (0behind2 | 2behind0))
& G((v0 = v3) -> (0behind3 | 3behind0))
& G((v1 = 0) -> X((v1 = 0)))
& G((v1 = 1) -> ((((v1 != 4) & !(((1behind0 | 1behind2) | 1behind3))) & X(((v1 = 1) | (v1 = 4)))) | X((v1 = 1))))
& G((v1 = 2) -> ((!(((1behind0 | 1behind2) | 1behind3)) & X(((v1 = 0) | (v1 = 2)))) | X((v1 = 2))))
& G((v1 = 3) -> ((!(((1behind0 | 1behind2) | 1behind3)) & X(((v1 = 2) | (v1 = 3)))) | X((v1 = 3))))
& G((v1 = 4) -> ((!(((1behind0 | 1behind2) | 1behind3)) & X(((v1 = 3) | (v1 = 4)))) | X((v1 = 4))))
& G((v1 = v2) -> (1behind2 | 2behind1))
& G((v1 = v3) -> (1behind3 | 3behind1))
& G((v2 = 5) -> ((((v2 != 7) & !(((2behind0 | 2behind1) | 2behind3))) & X(((v2 = 5) | (v2 = 7)))) | X((v2 = 5))))
& G((v2 = 6) -> ((!(((2behind0 | 2behind1) | 2behind3)) & X(((v2 = 5) | (v2 = 6)))) | X((v2 = 6))))
& G((v2 = 7) -> ((!(((2behind0 | 2behind1) | 2behind3)) & X(((v2 = 7) | (v2 = 8)))) | X((v2 = 7))))
& G((v2 = 8) -> ((!(((2behind0 | 2behind1) | 2behind3)) & X(((v2 = 8) | (v2 = 9)))) | X((v2 = 8))))
& G((v2 = 9) -> X((v2 = 9)))
& G((v2 = v3) -> (2behind3 | 3behind2))
& G((v3 = 5) -> ((((v3 != 7) & !(((3behind0 | 3behind1) | 3behind2))) & X(((v3 = 5) | (v3 = 7)))) | X((v3 = 5))))
& G((v3 = 6) -> ((!(((3behind0 | 3behind1) | 3behind2)) & X(((v3 = 5) | (v3 = 6)))) | X((v3 = 6))))
& G((v3 = 7) -> ((!(((3behind0 | 3behind1) | 3behind2)) & X(((v3 = 7) | (v3 = 8)))) | X((v3 = 7))))
& G((v3 = 8) -> ((!(((3behind0 | 3behind1) | 3behind2)) & X(((v3 = 8) | (v3 = 9)))) | X((v3 = 8))))
& G((v3 = 9) -> X((v3 = 9)))
& G((((v0 != v1) & (v1 = X(v1))) & X((v0 = v1))) -> X(0behind1))
& G((((v0 != v2) & (v2 = X(v2))) & X((v0 = v2))) -> X(0behind2))
& G((((v0 != v3) & (v3 = X(v3))) & X((v0 = v3))) -> X(0behind3))
& G((((v0 = v1) & 0behind1) & X((v0 = v1))) -> X(0behind1))
& G((((v0 = v1) & 1behind0) & X((v0 = v1))) -> X(1behind0))
& G((((v0 = v2) & 0behind2) & X((v0 = v2))) -> X(0behind2))
& G((((v0 = v2) & 2behind0) & X((v0 = v2))) -> X(2behind0))
& G((((v0 = v3) & 0behind3) & X((v0 = v3))) -> X(0behind3))
& G((((v0 = v3) & 3behind0) & X((v0 = v3))) -> X(3behind0))
& G((((v1 != v0) & (v0 = X(v0))) & X((v1 = v0))) -> X(1behind0))
& G((((v1 != v2) & (v2 = X(v2))) & X((v1 = v2))) -> X(1behind2))
& G((((v1 != v3) & (v3 = X(v3))) & X((v1 = v3))) -> X(1behind3))
& G((((v1 = v2) & 1behind2) & X((v1 = v2))) -> X(1behind2))
& G((((v1 = v2) & 2behind1) & X((v1 = v2))) -> X(2behind1))
& G((((v1 = v3) & 1behind3) & X((v1 = v3))) -> X(1behind3))
& G((((v1 = v3) & 3behind1) & X((v1 = v3))) -> X(3behind1))
& G((((v2 != v0) & (v0 = X(v0))) & X((v2 = v0))) -> X(2behind0))
& G((((v2 != v1) & (v1 = X(v1))) & X((v2 = v1))) -> X(2behind1))
& G((((v2 != v3) & (v3 = X(v3))) & X((v2 = v3))) -> X(2behind3))
& G((((v2 = v3) & 2behind3) & X((v2 = v3))) -> X(2behind3))
& G((((v2 = v3) & 3behind2) & X((v2 = v3))) -> X(3behind2))
& G((((v3 != v0) & (v0 = X(v0))) & X((v3 = v0))) -> X(3behind0))
& G((((v3 != v1) & (v1 = X(v1))) & X((v3 = v1))) -> X(3behind1))
& G((((v3 != v2) & (v2 = X(v2))) & X((v3 = v2))) -> X(3behind2))
& G((((((0behind1 & 2behind3) & (v1 = 0)) & (v3 = 9)) & (v2 = 9)) & (v0 = 0)) -> X((((((0behind1 & 2behind3) & (v1 = 0)) & (v3 =

9)) & (v2 = 9)) & (v0 = 0))))↪→
& G((((((v3 = 7) & !((((v0 = 4) | (v2 = 7)) | (v1 = 4)))) | ((v0 = 4) & !((((v3 = 7) | (v2 = 7)) | (v1 = 4))))) | ((v2 = 7) &

!((((v3 = 7) | (v0 = 4)) | (v1 = 4))))) | ((v1 = 4) & !((((v3 = 7) | (v0 = 4)) | (v2 = 7))))) | (((!((v3 = 7)) & !((v0 = 4))) &
!((v2 = 7))) & !((v1 = 4))));

↪→
↪→

SYSGOAL: G(F(((((0behind1 & 2behind3) & (v1 = 0)) & (v3 = 9)) & (v2 = 9)) & (v0 = 0)));

Listing A.2.: GR(1) formula for the urban scenario derived from Turb
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Figure A.1.: Predicate Graph for the highway scenario template Thw
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Figure A.2.: Predicate Graph for the urban scenario template Turb
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