
QUADify: Extracting Meshes with Pixel-level Details and Materials from Images

Supplementary Material

t = 0.0s t = 1.0s t = 2.0s

C
o
lo

r
Q

u
a
d

D
is

p
la

ce
d

Figure 12. Soft-body physics simulation. We use the quad-

dominant mesh of the CHAIR scene extracted from 100 images in

the NeRF Synthetic [33] dataset in a soft-body physics simulation

(top), simulated and rendered using Blender [13]. With minimal

pre-processing, just removing disconnected internal geometry be-

fore running the simulation, we compute deformations on our ex-

tracted quad mesh (Quad). Subdivision and displacement can be

applied after the simulation to recover pixel-level details, which

would be infeasible to directly include in the physics simulation

due to the increased geometric complexity (Displaced).

Acknowledgements We thank Seyedmorteza Sadat,

Guilherme Haetinger, and Rajesh Sharma for many

insightful discussions during the creation of this work.

7. Further Applications

7.1. Soft­Body Physics Simulation

A direct application of quad-dominant meshes is using them

for simulation in a physics engine since their regular topol-

ogy lends itself well to force propagation on the mesh. Par-

ticularly for soft-body physics, a regular arrangement of

faces is crucial to achieve consistent deformations [43, 61].

Since our meshes consist of such regularly arranged iso-

metric faces, they are particularly well-suited to soft-body

physics simulation. In Fig. 12, we show the results of using

one of our quad-dominant meshes in such a physics simu-

lation performed in Blender [13]. Since the extracted mesh

is lightweight, it can be efficiently simulated and deforms

consistently. Furthermore, since we extract small-scale de-

S0 S1 + d S2 + d

H
o
t
d
o
g

vis. CD (10−2)↓: 1.267 1.249 1.238

#V (103): 27 107 428

M
ic

vis. CD (10−2)↓: 0.130 0.131 0.129

#V (103): 10 38 153

Figure 13. Offline Level-of-detail. We show the same extracted

mesh of the HOTDOG and MIC scenes from the NeRF Synthetic

dataset at three levels of details by varying the number of subdivi-

sion steps from none S0 to two S2. For each additional subdivision

level, the number of vertices roughly quadruples while finer can be

represented.

tails using subdivision and displacement maps constrained

to the surface with texture coordinates, these small-scale de-

tails also get consistently deformed. Crucially, the complex

geometry created by subdivision and displacement does not

need to be included in the simulation since it can be applied

in a post-processing step after solving for the soft-body de-

formations. This enables efficient simulations while retain-

ing the pixel-level details extracted through displacement

directly on our quad-dominant meshes without requiring ex-

tensive mesh cleanup.

7.2. Offline Level­of­Detail Adjustment

Inspired by production workflows [7, 8], our method di-

rectly enables changing the level of detail of the extracted

meshes offline after the reconstruction. Since the geomet-

ric complexity of a scene can considerably slow down pro-

duction renderers and game engines, background objects

in real-world scenes are frequently represented using fewer

vertices. Our method natively supports this workflow by

varying the subdivision levels used for displacement.

We reconstruct the HOTDOG and MIC objects from the

NeRF Synthetic dataset [33] as described in Sec. 5.1 using

two subdivision levels during training. After the extraction,

the same Catmull-Clark subdivision and displacement ap-

proach can also be applied in a 3D modeling package, such

as Blender [13], recreating the displaced mesh. In Fig. 13,

we show the same quad-dominant mesh at various subdi-

vision levels with displacement. The number of vertices

exponentially increases with the number of subdivision lev-

els but simultaneously allows for representing more details

using displacement. Since displacement is stored as a high-

resolution 2D texture, which can be sampled at arbitrary

mesh resolutions, our method enables adaptively changing

the level of detail of the extracted mesh as a post-processing

step after reconstruction.

8. Experimental Details

8.1. Baselines

Inverse Rendering for Meshes. In the experiments in

Sec. 5.1, we compare our method with Nvdiffrec, Nvd-

iffrecmc, and FlexiCubes, which were all re-trained from

their respective available public source code. However, we

do not compare to NeRF-based techniques [1, 33], since

these reconstruct density fields, not meshes. Similarly, Neu-

ral Surface techniques, such as NeuS and Neuralangelo, can

only extract a mesh in a post-processing step, usually with

excessive geometry resolution [26, 39, 55].

Mesh reconstruction. For the experiments in Sec. 5.2,

we compare reconstructions from Marching Cubes (MC),

DMTet [47], the concurrent work FlexiCubes [48] and our

method. Since there did not exist a differentiable implemen-

tation of MC during this work to the best of our knowledge,

we use the forward implementation of kaolin1 implement-

ing the method described by Lorensen et al. [29] and add a

custom backward pass of Equ. 1 in PyTorch. For DMTet

and FlexiCubes, we use their respective available source

code.

Since the vertex count of the extracted meshes bounds

the amount of detail that can be extracted for the reference

objects, we match the mesh resolution between all methods

and report the average number of vertices over all objects

in Tab. 3 and Tab. 6. However, since each iso-surfacing

method extracts a different number of vertices at a fixed

voxel grid resolution, we vary the grid resolutions for each

method to match the vertex counts.

The dataset collected by Myles et al. [36] contains

116 objects ranging from CAD models to photogrammetry

1https : / / github . com / NVIDIAGameWorks / kaolin /

blob/master/kaolin/ops/conversions/voxelgrid.py

scans. For evaluation, we use the same subset of 79 water-

tight and non-skinny objects2 as FlexiCubes [48] provided

by the original authors. We center each mesh such that its

centroid is at the coordinate origin and its bounding box is

in [−0.9, 0.9]3 following NDC [12] and scale the voxel grid

to [−1, 1]3.

For supervision, we again follow FlexiCubes and ren-

der depth and mask images from randomly sampled poses

around each object. Since some reference objects contain

internal geometry, we use the SDF loss proposed by Flex-

iCubes, sampling 1000 random points and supervising the

predicted SDF with the reference.

8.2. Evaluation Metrics

Inverse Rendering for Meshes. We evaluate the visual

quality of the surface reconstructions by comparing the

Peak Signal to Noise Ratio (PSNR), Structural Similar-

ity Index Measure (SSIM), and Learned Perceptual Im-

age Patch Similarity (LPIPS) as implemented by Torch-

Metrics [37] on the 200 test images for each scene in the

NeRF Synthetic dataset [33]. We report per-scene view in-

terpolation metrics in Tab. 4 and show examples in Fig. 18.

Mesh reconstruction. As the key focus of our method is

extracting high-quality meshes, we compare the extracted

meshes in terms of extrinsic (accuracy of the reconstruc-

tion) and intrinsic (mesh quality) metrics: We report the

following commonly used extrinsic metrics:

• visible Chamfer Distance (vis. CD): This metric measures

the distance between two point clouds by searching for

nearest neighbors. We measure the visible CD shown

in Tab. 2 and Tab. 5 between the predicted and ground

meshes by scaling each mesh to fit the [−10, 10]3 bound-

ing box [18] and sampling 2.5 ·106 points on the triangles

visible in at least one test view following Nvdiffrec [35]

and FlexiCubes [48]. The visible CD is computed as the

mean symmetric squared L2 distance between the two

point clouds.

• Chamfer distance (CD): In Tab. 3 and Tab. 6, we report

a second Chamfer Distance, distinct from the previously

described visible CD to report consistent results with re-

lated work [12, 48]. Therefore, the numbers between

both Chamfer Distances are not directly comparable due

to different scaling of the objects. For CD, sample 105

points on all mesh faces and compute the mean symmet-

ric squared L2 distance between the point clouds.

• F-score (F1): Following NDC [12], we compute precision

and recall on the same point clouds as in the CD compu-

tation above. We define a point as a true positive if the

distance of a point on the predicted mesh is close enough

to one on the ground truth mesh (threshold = 0.005), else

2https://github.com/nv-tlabs/FlexiCubes/issues/

4

https://github.com/NVIDIAGameWorks/kaolin/blob/master/kaolin/ops/conversions/voxelgrid.py
https://github.com/NVIDIAGameWorks/kaolin/blob/master/kaolin/ops/conversions/voxelgrid.py
https://github.com/nv-tlabs/FlexiCubes/issues/4
https://github.com/nv-tlabs/FlexiCubes/issues/4

it is a false positive. If a ground truth point is close enough

to a predicted one (threshold = 0.005), it is defined as a

true positive, otherwise a false negative. The F-Score is

then the harmonic mean of precision and recall. We use

the publicly available implementation of NDC to compute

these metrics3.

Since our method focuses on extracting meshes with

high topological quality, we also evaluate the intrinsic qual-

ity of our meshes using the following metrics:

• Minimal and maximal face angle: We compute the angle

distributions in Fig. 9 by computing the respective angles

per face for each method.

• Radius Ratio (RR) and Aspect Ratio (AR): Both metrics

measure the distortion of faces from an ideal isometric

quad or triangle face, where lower is better. We follow

the definition of PyVista [51] to compute both metrics for

all faces. In Tab. 3, Tab. 6, and Fig. 9, we report the out-

lier percentage of each metric, where all faces with values

greater than 4 are commonly considered outliers [48].

9. Additional Results

9.1. Per­scene Results

Inverse Rendering for Meshes. In Tab. 4 we provide per-

scene breakdowns of the view interpolation results we re-

port in Sec. 5.1 and visually show the reconstructions in

Fig. 18. We consistently observe on-par results with Nvd-

iffrec and FlexiCubes for all scenes except FICUS, where

our method struggles to reconstruct the individual leaves in

the training images and instead predicts a single larger blob.

We attribute this failure to recover high-frequency geome-

try due to our method using an MLP to represent the SDF

instead of a randomly initialized per-vertex SDF as used

by all related works. We initialize the SDF with a sphere

and learn the object’s shape by continuously deforming this

sphere. This provides a continuous surface throughout the

optimization, which is required for our re-meshing formula-

tion, as it rearranges the edges of the Marching Cubes (MC)

mesh to form quad faces. However, this comes at the cost

of the MLP SDF getting stuck in local minima, especially

in concave regions, and having difficulty in reconstructing

disconnected geometry.

In Tab. 5, we provide a per-scene breakdown of the visi-

ble Chamfer distances shown in Sec. 5.1. Here, we see the

advantage of using subdivision and displacement to recover

small details. Our method extracts more accurate meshes

than all baselines across scenes except on FICUS and SHIP,

which are challenging due to the mentioned limitations of

the MLP SDF and limited shading model [35] respectively.

Still, on average, our method offers state-of-the-art geomet-

ric accuracy on the Quad mesh with an even more signifi-

cant improvement when using displacement.

3https://github.com/czq142857/NDC

PSNR (dB) ↑

Chair Drums Ficus Hotdog Lego Mats. Mic Ship Avg.

Nvdiffrec 31.98 24.56 30.66 33.06 29.03 26.56 30.71 25.95 29.06

Nvdiffrecmc 28.93 23.02 25.54 30.64 26.41 25.58 28.93 23.42 26.56

FlexiCubes 32.02 24.67 31.16 33.24 29.99 27.28 27.26 26.02 28.95

Our 30.95 24.40 25.56 32.63 28.30 26.62 30.07 25.15 27.96

SSIM ↑

Chair Drums Ficus Hotdog Lego Mats. Mic Ship Avg.

Nvdiffrec 0.969 0.921 0.969 0.972 0.946 0.931 0.976 0.827 0.939

Nvdiffrecmc 0.946 0.905 0.938 0.944 0.912 0.910 0.962 0.786 0.913

FlexiCubes 0.970 0.923 0.971 0.973 0.953 0.940 0.936 0.822 0.936

Our 0.963 0.922 0.947 0.969 0.941 0.938 0.974 0.812 0.933

LPIPS ↓

Chair Drums Ficus Hotdog Lego Mats. Mic Ship Avg.

Nvdiffrec 0.043 0.090 0.047 0.062 0.062 0.088 0.040 0.192 0.078

Nvdiffrecmc 0.075 0.111 0.077 0.111 0.108 0.110 0.062 0.263 0.115

FlexiCubes 0.041 0.089 0.046 0.059 0.056 0.079 0.087 0.202 0.082

Our 0.047 0.088 0.070 0.061 0.067 0.083 0.040 0.209 0.083

Table 4. View interpolation. Image quality metrics on all 200 test

images in the NeRF Synthetic dataset. Results for Nvdiffrec [35],

Nvdiffrecmc [20] and FlexiCubes [47] are computed by running

the respective public source code.

vis. CD↓(10−2) Chair Drums Ficus Hotdog Lego Mats. Mic Ship Avg.

Nvdiffrec 2.95 1.95 0.64 2.36 2.60 0.59 0.12 50.88 7.76

Nvdiffrecmc 2.75 2.05 1.80 2.09 4.54 0.33 0.14 30.04 5.47

FlexiCubes 7.79 2.04 0.11 2.31 1.60 0.40 0.11 11.76 3.26

Our Quad 1.97 0.70 4.64 1.27 1.25 0.37 0.13 15.42 3.22

Our Disp. 1.86 0.64 2.68 1.24 1.32 0.38 0.13 15.47 2.96

#V ↓(103) Chair Drums Ficus Hotdog Lego Mats. Mic Ship Avg.

Nvdiffrec 50 33 19 28 57 32 11 92 40

Nvdiffrecmc 50 30 20 29 53 27 11 113 42

FlexiCubes 49 52 28 34 82 53 17 101 52

Our Quad 33 30 26 27 55 23 10 56 32

Our Disp. 530 484 398 428 886 361 153 888 516

Table 5. Geometric quality by Chamfer scores and vertex counts

on the NeRF synthetic dataset. Results for Nvdiffrec are re-run

based on publicly available code. Note that our method can pri-

marily reconstruct opaque geometry larger than the re-meshing

edge length s, causing our method to under-perform on the FI-

CUS scene due to the small-scale leaf geometry present.

Mesh reconstruction. In Tab. 6, we supplement the eval-

uation in Sec. 5.2 by additionally comparing across mesh

resolutions. In Fig. 19, we show additional qualitative com-

parisons. We see a similar pattern across scales where our

quad mesh consistently improves on MC and DMTet re-

garding reconstruction accuracy but is slightly behind Flex-

iCubes. However, when adding a single level of subdivi-

sion with displacement, our method reconstructs the objects

more accurately than all baselines.

The representational power of displacement is shown by

our results at the lowest resolution (Our Disp.), equivalent

to 323 in terms of number of vertices, which gives lower CD

than either MC or DMTet at 643 and 803 voxel resolution

respectively and is only slightly less accurate than Flexi-

Cubes. This shows that our quad-dominant geometry with

displacement extracts significantly more accurate geometry

than either related work.

Regarding intrinsic metrics, our quad-dominant meshes

https://github.com/czq142857/NDC

323 G CD(10−5)↓ F1↑ AR>4(%)↓ RR>4(%)↓ #V(103)

MC 32 10.49 0.52 12.15 12.08 2.62

DMTet 40 9.08 0.58 14.37 14.04 2.76

FlexiCubes 32 6.52 0.65 8.16 9.71 3.08

Our Quad 55 8.02 0.56 0.00 0.38 2.62

Our Disp. 55 5.00 0.69 0.55 2.84 10.42

643 G CD(10−5)↓ F1↑ AR>4(%)↓ RR>4(%)↓ #V(103)

MC 64 5.22 0.66 12.02 12.01 10.34

DMTet 80 5.23 0.67 16.89 16.32 10.92

FlexiCubes 64 4.87 0.69 6.69 8.26 11.87

Our Quad 110 4.96 0.67 0.00 0.24 10.66

Our Disp. 110 4.63 0.70 0.22 0.88 42.75

Table 6. Mesh reconstruction. Quantitative results on the selected

four objects from the Myles [36] dataset. We report the following

metrics: G: Voxel grid resolution, CD: Chamfer Distance, F1: F1

Score, AR: face Aspect Ratio, RR: face Radius Ratio, #V: Number

of vertices

use more regular faces and almost eliminate outliers in As-

pect Ratio (AR) and Radius Ratio (RR) across scales. Sim-

ilar to the results shown in Tab. 6, the displaced mesh (Our

Disp.) introduces slightly more irregular faces due to dis-

placing the subdivided geometry.

9.2. Real­world Results

Due to space constraints, we could not show further re-

sults on real-world scenes from the Tanks and Temples

dataset [24]. We qualitative results in Fig. 14, showing that

our method can also extract high-quality meshes from large-

scale real-world objects.

10. Implementation

We trained our method on either a single NVIDIA A6000

48GB in Sec. 5.1 or a single NVIDIA RTX 4090 GPU

24GB for Sec 5.2. Each scene in Sec. 5.1 can be recon-

structed in a few hours with meaningful results in the first

few steps, as shown in the supplemental video. Our method

gives meaningful results within the first minutes (≈300

steps, see suppl. video) In Sec. 5.1 a run to convergence

(6k steps) for a single object takes 14.5h. In Sec. 5.2 each

object takes 19 min in total (1k steps), with the difference

mainly due to different voxel resolutions (1103 vs. 1813)

and number of steps detailed in Sec. 11.1.

Re-meshing size. For quad-dominant re-meshing, we

choose the minimal quad size s possible at s =
√
2 D
G−1 ,

where D is the size of the bounding box and G is the voxel

grid resolution used by Marching Cubes (MC). This choice

comes at the cost of slightly worse re-meshing quality

than InstantMeshes [22], who choose a larger re-meshing

size but improves coupling of the MC mesh to the quad-

dominant one. This choice also results in the maximal quad-

dominant mesh resolution at a fixed voxel grid resolution,

allowing us to extract the maximum detail possible.

Triangulation. Since we use Nvdiffrast [25] for differen-

tiable rasterization, our method needs to convert the quad-

dominant mesh to a triangle mesh for rendering. There are

two possible ways to split a quad face into two triangles,

and the chosen split direction can significantly impact the

surface location, particularly at low geometry resolutions.

So we use an adaptive triangulation rule: We query the o-

MLP for each possible split direction and choose the one

that best aligns with the orientation field at the center of

each face.

10.1. Optimization

Inverse Rendering for Meshes. Our method uses an

MLP SDF as described in Sec. 5.4 instead of a per-voxel

SDF. To regularize the training of the SDF, we progres-

sively enable encoding levels for both the SDF and mate-

rials. Specifically, we initialize training the SDF using 5

hash encoding levels for 1000 steps and enable an additional

level every 500 steps until all 10 levels are enabled. Simi-

larly, we initially enable 3 levels for the material encoding

and enable an additional level every 500 steps until 16 lev-

els are reached. We only apply subdivision and displace-

ment after 3000 steps once the overall shape has converged,

and we enable another level every 1500 steps until 2 levels

are reached. This schedule is visualized in Fig. 15 (a). The

same configuration is used for all scenes, except the FICUS,

where we saw improved results by enabling more SDF hash

levels earlier, as shown in Fig. 15 (b). In total, we optimize

each scene for 6000 steps.

Experimentally, we found that applying subdivision on

the quad-dominant mesh during the entire optimization pro-

cess resulted in worse convergence across scenes, as the sur-

face optimization would fail to recover concave regions in

the objects as described in Sec. 4.3. By directly rendering

the un-subdivided mesh S0 and enabling subdivision after

3000 steps and the final level S2 after 1500 further steps.

Following Nvdiffrec, we warm up the optimization by

linearly increasing the learning rate to 0.03 over 200 steps

and then exponentially decaying it over 5000 steps to 0.003

as visualized in Fig. 15.

Mesh reconstruction. We use a hash-encoded MLP SDF

described in Sec. 4 with progressively increasing hash en-

coding depth starting at 5 levels for the first 200 steps and

then enabling another level every 100 steps until the max-

imum of 10 levels is reached. In total, we run shape op-

timization for 1000 steps with a learning rate of 0.01 for

each method. When displacement is used, we train the re-

construction for 500 steps without it and enable one level

of subdivision and displacement for the last 500 steps. We

visualize this training schedule in Fig. 15 (c).

Reference Color Geometry Quad / d kd/korm HDR Probe

F
a
m
il
y

I
g
n
a
t
is

Figure 14. Reconstruction on two scenes from the Tanks and Temples dataset [24]. We show large-scale scenes with extracted quad-

dominant geometry, displacement, materials, and lighting.

0

5

10

SD
F

le
ve

ls

0

8

16

M
at

. l
ev

el
s

0

1

2

i

0 1000 2000 3000 4000 5000 6000
Step

0.00

0.03

lr

(a) View interpolation

0

5

10

SD
F

le
ve

ls

0

8

16

M
at

. l
ev

el
s

0

1

2

i

0 1000 2000 3000 4000 5000 6000
Step

0.00

0.03

lr

(b) View interpolation on FICUS

0

5

10

SD
F

le
ve

ls

0

1

i

0 200 400 600 800 1000
Step

0.00

0.01

lr

(c) Mesh reconstruction

Figure 15. Training schedules for the View interpolation and Mesh

reconstruction experiments in Sec. 5.1 and Sec. 5.2 respectively.

10.2. Losses

To supervise our method, we follow a similar approach to

Nvdiffrec [35] and mainly use an image and mask loss to

train our pipeline and use similar losses throughout this

work. In this section, we provide details for each loss.

Image loss. Since colors are represented in linear space

in our physically-based shading pipeline, a loss function ro-

bust to unbounded radiance values is required. Therefore,

we tone map the rendered images Iθ using a logarithmic

mapping and the sRGB transfer function Γ(x) [50] before

comparing it to the ground-truth images Igt. After tone-

mapping each image, we compute the coverage and texture

loss, following Nvdiffrec [35]:

Γ(x) =

{

12.92x x ≤ 0.0031308

(1 + a)x1/2.4 − a x > 0.0031308

C(x) = Γ(log(1 + x))

Ltex = ∥Ia
gt

(

C(Ia
gtI

rgb

θ)− C(Ia
gtI

rgb
gt)

)

∥1

Lmask =
1

|Igt|
∥Ia

θ − Ia
gt∥22

(13)

To separate the texture and coverage losses, we denote the

color channels of the rendered and ground-truth image re-

spectively, by I
rgb

θ , I
rgb
gt with their associated alpha channels

Ia
θ, I

a
gt.

Light regularizer. Since real-world datasets contain

mostly neutral white lighting, we follow Nvdiffrec [35] and

NeRFactor [60] and regularize the lighting towards white:

Llight =
1

3

3
∑

i=1

|c̄i − ci| (14)

Where ci, c̄i are the RGB channel intensities of the light

cube map and average channel intensity, respectively.

Occlusion regularizer. As the shading model Nvdiffrec

uses does not support shadows, they modulate the outgoing

radiance by an occlusion mask stored in the first channel of

the korm map. Since this effect is not physically accurate, it

is regularized to be small.

Locc =
1

|korm|
∥ko

orm∥2 (15)

Material regularizer. Similar to NeRFactor [60], Nvd-

iffrec regularizes the predicted Albedo to be as smooth as

possible by enforcing the albedo at a surface location xsurf

to be similar at over small perturbations ϵ ∼ N (0, σI):

Lmat =
∑

xsurf

|kd(xsurf)− kd(xsurf + ϵ)| (16)

Different from Nvdiffrec, during second stage optimization,

we perform albedo regularization using perturbations ϵ in

image space, unlike Nvdiffrec, which does so in uv-space.

This difference is particularly pronounced when the auto-

matic uv-unwrapping of the first stage mesh contains many

disconnected uv-islands, on the boundary of which adjacent

faces on the mesh might not be adjacent in uv-space.

Laplacian regularizer. In the second stage, when the

topology is fixed, a Laplacian regularizer is used to regular-

ize vertex movements. Given the uniformly weighted vertex

differential δi = vi − 1
|N (i)|

∑

j∈N (i) vj , where N (i) are

the 1-ring neighbors of vertex vi, Nvdiffrec use the follow-

ing regularizer:

Lδ =
1

n

n
∑

i=1

∥δi − δ′i∥22 (17)

Where δi, δ
′
i are the Laplacians of the vertex vi in the cur-

rently optimized mesh, and the fixed input mesh (output

from the first stage), respectively.

Displacement regularizer. To encourage the overall sur-

face shape to be represented using the quad-dominant mesh

and only represent small shading details too small for the

quad-dominant mesh as displacement, we regularize the

displacement magnitude:

Ldisp =
1

|Sl|
∑

v∈Sl

∥d(v)∥1 (18)

Op loss. For self-learning the orientation field, he

wrapped version of the van-Mises distribution introduced in

Sec. 4.1 can be efficiently computed by applying the double

angle formula repeatedly (cos(2x) = 2 cos2(x)− 1):

Lo(ô,o) = 1− exp(cos(4θ)− 1)

= 1− exp(8(cos4 θ − cos2 θ))
(19)

Given two unit vectors a, b, the equivalence cos θ = ⟨a, b⟩
allows for efficiently computing the powers of cos θ in the

above equation.

λmask 1 λtex 1
λlight 5 · 10−4 λocc 10−3

λmat 3 · 10−2 λdisp 5 · 10−3

λop 10−2 λδ 3 · 104
λdepth 10 λM 1
λeik 1 λsdf 2 · 103

Table 7. Loss weights.

Inverse Rendering losses. For the inverse rendering ex-

periments in Sec. 5.2, we follow Nvdiffrec and run the op-

timization for two stages: In both stages, we optimize for

an accurate reconstruction of the training images using the

following losses:

Lrecon =λmaskLmask + λtexLtex + λlightLlight+

λoccLocc + λmatLmat + λdispLdisp

(20)

Weights for all losses are given in Tab. 7. In the first stage,

we optimize the shape, topology, materials, and lighting us-

ing the reconstruction loss combined with our orientation

and position loss:

Lfirst = Lrecon + λopLop (21)

Once the reconstruction has converged, we freeze the topol-

ogy, re-parametrize the model to use 2D textures to rep-

resent materials instead of the material MLP, and continue

optimizing in a second stage to remove texture seams:

Lsecond = Lrecon + λδLδ (22)

Eikonal Loss. To enforce that the MLP SDF is a valid

distance, we use an eikonal loss, regularizing the gradient

magnitude towards 1. This enforces the SDF to satisfy the

eikonal equation ∥∇s(x)∥ = 1 almost everywhere:

Leik =
1

N

N
∑

i=1

(∥∇s(xi)∥2 − 1)2 (23)

Mesh reconstruction losses. For the mesh reconstruction

experiments in Sec. 5.2, we eliminate potential inconsis-

tencies when using images for reconstruction and super-

vise the mesh extraction using depth, mask images fol-

lowing FlexiCubes [48]. Since we are supervising train-

ing using depth Dθ, Dgt and mask images Mθ,Mgt ren-

dered form the reference objects, we replace the image

losses with the ones an L2 loss comparing depth Ldepth =
1

|Dgt|
∥MgtDθ − MgtDgt∥ and an L1 loss on the rendered

mask LM = 1
|Mgt|
∥Mθ − Mgt∥1. Additionally, the pre-

dicted SDF sθ(x) is supervised at 1000 randomly sampled

points with the ground truth SDF sgt(x) every iteration with

S
h
ip

RGBA Albedo RGB Albedo
vis. CD (10−2)↓: 15.47 9.43

Figure 16. Transparency in secondstage optimization as pro-

posed by Nvdiffrec. Enabling the prediction of transparent Albedo

causes the reconstruction to predict transparent blobs (left), de-

creasing reconstruction accuracy.

Lsdf =
1
N

∑N
i=1(sgt(xi)− sθ(xi))

2. This gives the follow-

ing loss:

Lmesh =λMLM + λdepthLdepth + λsdfLsdf

λdispLdisp + λeikLeik + λopLop

(24)

We do not perform second stage optimization in this exper-

iment since we do not reconstruct materials and lighting.

10.3. Second Stage optimization

Nvdiffrec supports rendering a transparent Albedo texture

kd during second-stage optimization, where mesh the topol-

ogy is frozen and only vertex positions, lighting, and mate-

rials are optimized. Allowing for partially transparent ma-

terials improves view interpolation quality, especially on

scenes with small geometric features, such as FICUS. Also,

since the shading model used in Nvdiffrec does not model

refractive surfaces explicitly, these are represented by semi-

transparent geometry.

However, this transparent geometry causes blob-like ar-

tifacts, as shown in Fig. 16, which lower chamfer scores.

To give a fair comparison with Nvdiffrec, Nvdiffrecmc, and

FlexiCubes, we show results throughout this work using

transparency as proposed by Nvdiffrec. In particular, the

results in Fig. 18 allow using transparent Albedo textures.

10.4. Differentiable Subdivision Algorithm

The Algorithm proposed by Dupuy et al. [17] as presented

only supports manifold meshes. However, our method

can extract non-manifold vertices [28] during optimization,

which must also be subdivided consistently to compute cor-

rect gradients on all vertices. Therefore, we modify the al-

Subdivision Cage S0 Our Subdivision S4 Dupuy et al. S4 Blender Subdivision S4

Figure 17. The method by Dupuy et al. [17] only subdivides man-

ifold meshes. Their method introduces spurious geometry when

subdividing non-manifold vertices S0.

gorithm by Dupuy et al. [17] to freeze non-manifold ver-

tices, shown in Fig. 17 and in Alg. 1. We use Sd = (Hd,Vd)
to denote the subdivided mesh at the d-th level withHd,Vd
denoting the half-edges and vertices respectively.

Algorithm 1 Modified VERTEXPOINTS algorithm by [17]

freezing non-manifold vertices.

1: procedure NONMANIFOLDVERTEXPOINT(Sd: Input

mesh)

2: Vd+1 ← VERTEXPOINTS(Sd) ▷ Alg. 4 [17]

3: n0, n1, . . . , n|Vd+1| = 0
4: e0, e1, . . . , e|Vd+1| = 0
5: for h ∈ Hd do

6: n← VALENCE(Sd, h) ▷ Alg. 6 [17]

7: v ← VERT(h) ▷ Vertex of h

8: nv ← nv + n ▷ Valence to vertices

9: ev ← ev + 1 ▷ Inc. vertex edges

10: end for

11: for v ∈ Vd+1 do

12: if ev ̸= nv then

13: Vd+1[v]← Vd[v] ▷ Freeze non-manifold

14: end if

15: end for

16: return Vd+1

17: end procedure

11. Scene Credits

Spot and Bob models (CC-0) by Keenan Kane. The NeRD

dataset [39] (moldGoldCape and ethiopianHead) (CC-NC-

SA 4.0). TanksAndTemple Dataset by Knapitsch et al. [24].

We thank the blendswap4 users for the models from the

NeRF Synthetic dataset [33]: 1DInc (chair, CC-0), bryana-

jones (drums, CC-BY), Herberhold (ficus, CC-0), erick-

free (hotdog, CC-0) Heinzelnisse (lego, CC-BY-NC), el-

brujodelatribu (materials, CC-0), uped.de (mic, CC-0),

gregzaal (ship, CC-BY-SA). The environment maps from

Poly Heaven (CC0) are shipped with Blender [13]. Mod-

els in the dataset by Mylet et al. [36] are collected from the

AIM@Shape database and other popular repositories.

4https://blendswap.com/

https://blendswap.com/

Reference Shaded Geometry Quad / d kd / korm HDR Probe

C
h
a
ir

D
r
u
m
s

F
ic

u
s

H
o
t
d
o
g

L
e
g
o

M
a
t
s
.

M
ic

S
h
ip

Figure 18. Mesh extraction results on the NeRF Synthetic dataset. We show our shaded models, the displaced geometry, quad-dominant

meshes with the displacement magnitude, materials, and lighting. Quad-dominant meshes capture the base geometry, while high-frequency

details are represented by displacement on the subdivided mesh. Note that transparent textures represent fine structures in the shaded images

better.

Reference MC DMTet FC Our Quad Our Displaced

Figure 19. Visual comparison of different mesh extraction techniques. Our displaced and quad-dominant meshes, Marching Cubes (MC),

and DMTet [47] are generated by directly supervising predicted geometry with depth and mask losses on the ground truth. Our quad-

dominant meshes show clear alignment of the quad faces to object features and extraction of surface details visible in the displaced

surfaces.

